OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 17, Iss. 24 — Nov. 23, 2009
  • pp: 21910–21917

Complete compensation of pulse broadening in an amplifier-based slow light system using a nonlinear regeneration element

Sanghoon Chin, Miguel Gonzalez-Herraez, and Luc Thévenaz  »View Author Affiliations

Optics Express, Vol. 17, Issue 24, pp. 21910-21917 (2009)

View Full Text Article

Enhanced HTML    Acrobat PDF (343 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We experimentally demonstrate complete compensation of pulse broadening in an amplifier-based slow light system. The configuration of the delay line basically consists of two stages: a conventional Brillouin slow light system and a nonlinear regeneration element. Signal pulses experienced both time delay and temporal broadening through the Brillouin delay line and then the delayed pulses were delivered into a nonlinear optical loop mirror. Due to the nonlinear response of the transmission of the fiber loop, the inevitably broadened pulses were moderately compressed in the output of the loop, without loss in the capacity to delay the pulses. The overall result is that, for the maximum delay, the width of the pulse could be kept below the input width while the time delays introduced by the slow light element were preserved. Using this delay line, a signal pulse with duration of 27 ns at full width at half maximum was delayed up to 1.3-bits without suffering from signal distortion.

© 2009 Optical Society of America

OCIS Codes
(060.2310) Fiber optics and optical communications : Fiber optics
(060.4370) Fiber optics and optical communications : Nonlinear optics, fibers
(190.3270) Nonlinear optics : Kerr effect
(290.5900) Scattering : Scattering, stimulated Brillouin
(350.5500) Other areas of optics : Propagation

ToC Category:
Fiber Optics and Optical Communications

Original Manuscript: September 9, 2009
Revised Manuscript: October 26, 2009
Manuscript Accepted: October 30, 2009
Published: November 16, 2009

Sanghooon Chin, Miguel Gonzalez-Herraez, and Luc Thévenaz, "Complete compensation of pulse broadening in an amplifier-based slow light system using a nonlinear regeneration element," Opt. Express 17, 21910-21917 (2009)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. R. W. Boyd and D. J. Gauthier, "‘Slow’ and ‘Fast’ light," in Progress in Optics, E. Wolf, ed., (Elsevier, Amsterdam, 2002), Vol. 43, Chap. 6, pp. 497-530. [CrossRef]
  2. J. B. Khurgin and R. S. Tucker, Slow light: Science and applications (CRC Press, Boca Raton, 2009).
  3. M. G. Herráez, K. Y. Song, and L. Thévenaz, "Arbitrary-bandwidth Brillouin slow light in optical fibers," Opt. Express,  14, 1395-1400 (2005). [CrossRef]
  4. S. Chin, M. G. Herraez, and L. Thevenaz, "Simple technique to achieve fast light in gain regime using Brillouin scattering," Opt. Express,  15, 10814-10821 (2007). [CrossRef] [PubMed]
  5. A. Zadok, O. Raz, A. Eyal, and M. Tur, "Optically Controlled Low-Distortion Delay of GHz-Wide Radio-Frequency Signals Using Slow Light in Fibers," Photon. Technol. Lett. 19, 462-464 (2007). [CrossRef]
  6. R. Pant, M. D. Stenner, M. A. Neifeld, and D. J. Gauthier, "Optimal pump profile designs for broadband SBS slow-light systems," Opt. Express 16, 2764-2777 (2008). [CrossRef] [PubMed]
  7. M. D. Stenner, M. A. Neifeld, Z. Zhu, A. M. C. Dawes, and D. J. Gauthier, "Distortion management in slow-light pulse delay," Opt. Express 13, 9995-10002 (2005). [CrossRef] [PubMed]
  8. Z. Zhu, D. J. Gauthier, Y. Okawachi, J. E. Sharping, A. L. Gaeta, R. W. Boyd, and A. E. Willner, "Numerical study of all-optical slow-light delays via stimulated Brillouin scattering in an optical fiber," J. Opt. Soc. Am. B 22, 2378-2384 (2005).
  9. M. Lee, R. Pant, and M. A. Neifeld, "Improved slow-light delay performance of a broadband stimulated Brillouin scattering system using fiber Bragg gratings," Appl. Opt. 47, 6404-6415 (2008). [CrossRef] [PubMed]
  10. J. T. Mok, C, M. Sterke, I. C. M. Littler, and B. J. Eggleton, "Dispersionless slow light using gap solitons," Nature 2, 775-780 (2006).
  11. S. Sandhu, M. L. Povinelli, M. F. Yanik, and S. Fan, "Dynamically tuned coupled-resonator delay lines can be nearly dispersion free," Opt. Lett. 31, 1985-1987 (2006). [CrossRef] [PubMed]
  12. S. Chin and L. Thevenaz, "Optimized shaping of isolated pulses in Brillouin fiber slow light systems," Opt. Lett. 34, 707-709 (2009). [CrossRef] [PubMed]
  13. M. D. Stenner and M. A. Neifeld, "Optimal pulse design for communication-oriented slow-light pulse detection," Opt. Express 16, 651-662 (2008). [CrossRef] [PubMed]
  14. R. W. Boyd, D. J. Gauthier, A. L. Gaeta, and A. E. Willner, "Maximum time delay achievable on propagation through a slow-light medium," Phys. Rev. A 71, 023801 (2005). [CrossRef]
  15. J. B. Khurgin, "Optical buffers based on slow light in electromagnetically induced transparent media and coupled resonator structures: Comparative analysis," J. Opt. Soc. Amer. B 22, 1062 - 1073 (2005). [CrossRef]
  16. D. A. B. Miller, "Fundamental Limit to Linear One-Dimensional Slow Light Structures," Phys. Rev. Lett. 99,203903 (2007). [CrossRef]
  17. M. Gonzalez-Herraez and L. Thévenaz "Physical limits to broadening compensation in linear slow light systems," Optics Express 17, 4732-4739 (2009). [CrossRef] [PubMed]
  18. A. Wiatrek, R. Henker, S. Preussler, M. J. Ammann, A. T. Schwarzbacher, and T. Schneider," Opt. Express 17, 797-802 (2009). [CrossRef] [PubMed]
  19. N. J. Doran and D. Wood, "Nonlinear-optical loop mirror," Opt. Lett. 13, 56-58 (1988). [CrossRef] [PubMed]
  20. K. Smith, N. J. Doran, and P. G. H. Wigley, "Pulse shaping, compression and pedestal suppression employing a nonlinear optical loop mirror," Opt. Lett. 15, 1294-1296 (1990). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1. Fig. 2. Fig. 3.
Fig. 4.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited