OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 17, Iss. 24 — Nov. 23, 2009
  • pp: 21944–21955

Highly birefringent vaterite microspheres: production, characterization and applications for optical micromanipulation

Simon J. Parkin, Robert Vogel, Martin Persson, Maren Funk, Vincent L. Y. Loke, Timo A. Nieminen, Norman R. Heckenberg, and Halina Rubinsztein-Dunlop  »View Author Affiliations

Optics Express, Vol. 17, Issue 24, pp. 21944-21955 (2009)

View Full Text Article

Enhanced HTML    Acrobat PDF (643 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



This paper reports on a simple synthesis and characterization of highly birefringent vaterite microspheres, which are composed of 20–30 nm sized nanocrystalls. Scanning electron microscopy shows a quite disordered assembly of nanocrystals within the microspheres. However, using optical tweezers, the effective birefringence of the microspheres was measured to be Δn=0.06, which compares to Δn=0.1 of vaterite single crystals. This suggests a very high orientation of the nanocrystals within the microspheres. A hyperbolic model of the direction of the optical axis throughout the vaterite spherulite best fits the experimental data. Results from polarized light microscopy further confirm the hyperbolic model.

© 2009 Optical Society of America

OCIS Codes
(140.7010) Lasers and laser optics : Laser trapping
(160.1190) Materials : Anisotropic optical materials
(260.1180) Physical optics : Crystal optics
(260.1440) Physical optics : Birefringence
(350.4855) Other areas of optics : Optical tweezers or optical manipulation

ToC Category:
Optical Trapping and Manipulation

Original Manuscript: October 5, 2009
Revised Manuscript: November 9, 2009
Manuscript Accepted: November 9, 2009
Published: November 16, 2009

Virtual Issues
Vol. 4, Iss. 13 Virtual Journal for Biomedical Optics

Simon J. Parkin, Robert Vogel, Martin Persson, Maren Funk, Vincent L. Loke, Timo A. Nieminen, Norman R. Heckenberg, and Halina Rubinsztein-Dunlop, "Highly birefringent vaterite microspheres: production, characterization and applications for optical micromanipulation," Opt. Express 17, 21944-21955 (2009)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. A. Ashkin, J. M. Dziedzic, J. E. Bjorkholm, and S. Chu, "Observation of single-beam gradient force optical trap for dielectric particles," Opt. Lett. 11, 288-290 (1986). [CrossRef] [PubMed]
  2. K. Svoboda, C. F. Schmidt, B. J. Schnapp, and S. M. Block, "Direct observation of kinesin stepping by optical trapping interferometry," Nature 365, 721-727 (1993). [CrossRef] [PubMed]
  3. J. T. Finer, R. M. Simmons, and J. A. Spudich, "Single myosin molecule mechanics: piconewton forces and nanometre steps," Nature 368, 113-119 (1994). [CrossRef] [PubMed]
  4. D. E. Smith, S. J. Tans, S. B. Smith, S. Grimes, D. L. Anderson, and C. Bustamante, "The bacteriophage theta 29 portal motor can package DNA against a larger internal force," Nature 413, 748-752 (2001). [CrossRef] [PubMed]
  5. G. Knöner, B. E. Rolfe, J. H. Campbell, S. J. Parkin, N. R. Heckenberg, and H. Rubinsztein-Dunlop, "Mechanics of cellular adhesion to artificial artery templates," Biophys. J. 91, 3085-3096 (2006). [CrossRef] [PubMed]
  6. Y. Hu, T. A. Nieminen, N. R. Heckenberg, and H. Rubinsztein-Dunlop, "Antireflection coating for improved optical trapping," J. Appl. Phys. 103, 093119 (2008). [CrossRef]
  7. M. E. J. Friese, T. A. Nieminen, N. R. Heckenberg, and H. Rubinsztein-Dunlop, "Optical alignment and spinning of laser-trapped microscopic particles," Nature 394, 348-350 (1998). [CrossRef]
  8. T. A. Nieminen, N. R. Heckenberg, and H. Rubinsztein-Dunlop, "Optical measurement of microscopic torques," J. Mod. Opt. 48, 405-413 (2001).
  9. C. Deufel, S. Forth, C. R. Simmons, S. Dejgosha, and M. D. Wang, "Nanofabricated quartz cylinders for angular trapping: DNA supercoiling torque detection," Nat. Mater. 4, 223-225 (2007). [CrossRef]
  10. K. C. Neuman, T. Lionnet, and J.-F. Allemand, "Single-molecule micromanipulation techniques," Annu. Rev. Mater. Res. 37, 33-67 (2007). [CrossRef]
  11. K. C. Neuman and A. Nagy, "Single-molecule force spectroscopy: optical tweezers, magnetic tweezers and atomic force microscopy," Nat. Methods 5, 491-505 (2008). [CrossRef] [PubMed]
  12. T. Pilizota, T. Bilyard, F. Bai, M. Futai, H. Hosokawa, and R. M. Berry, "A programmable optical angle clamp for rotary molecular motors," Biophys. J. 93, 264-275 (2007). [CrossRef] [PubMed]
  13. J. R. Moffitt, Y. R. Chemla, S. B. Smith, and C. Bustamante, "Recent advances in optical tweezers," Annu. Rev. Biochem. 77, 205-228 (2008). [CrossRef] [PubMed]
  14. J. Leach, H. Mushfique, R. di Leonardo, M. Padgett, and J. Cooper, "An optically driven pump for microfluidics," Lab on a Chip 6, 735-739 (2006). [CrossRef] [PubMed]
  15. A. I. Bishop, T. A. Nieminen, N. R. Heckenberg, and H. Rubinsztein-Dunlop, "Optical microrheology using rotating laser-trapped particles," Phys. Rev. Lett. 92, 198104 (2004). [CrossRef] [PubMed]
  16. S. J.W. Parkin, G. Kn¨oner, T. A. Nieminen, N. R. Heckenberg, and H. Rubinsztein-Dunlop, "Picoliter viscometry using optically rotated particles," Phys. Rev. E 76, 041507 (2007). [CrossRef]
  17. T. A. Wood, G. S. Roberts, S. Eaimkhong, and P. Bartlett, "Characterization of microparticles with driven optical tweezers," Faraday Discuss. 137, 319-333 (2008). [CrossRef] [PubMed]
  18. C.-K. Sun, Y.-C. Huang, P. C. Cheng, H.-C. Liu, and B.-L. Lin, "Cell manipulation by use of diamond microparticles as handles of optical tweezers," J. Opt. Soc. Am. B 18, 1483-1489 (2001). [CrossRef]
  19. K. D. Wulff, D. G. Cole, and R. L. Clark, "Controlled rotation of birefringent particles in an optical trap," Appl. Opt. 47(34), 6428-6433 (2008).
  20. M. Funk, S. J. Parkin, A. B. Stilgoe, T. A. Nieminen, N. R. Heckenberg, and H. Rubinsztein-Dunlop, "Constant power optical tweezers with controllable torque," Opt. Lett. 34, 139-141 (2009). [CrossRef] [PubMed]
  21. J. D. C. McConnell, "Vaterite from Ballycraigy, Larne, Northern Ireland," Mineral. Mag. 32, 535-544 (1960). [CrossRef]
  22. J. Johnston, H. E. Merwin, and E. D. Williamson, "The several forms of calcium carbonate," Am. J. Sci. 41, 473-512 (1916). [CrossRef]
  23. S. R. Kamhi, "On the structure of vaterite, CaCO3," Acta Crystallogr. 16, 770-772 (1963). [CrossRef]
  24. L. Dupont, F. Portemer, and M. Figlarz, "Synthesis and study of a well crystallized CaCO3 vaterite showing a new habitus," J. Mater. Chem. 7, 797-800 (1997). [CrossRef]
  25. J.-P. Andreassen and M. J. Hounslow, "Growth and aggregation of vaterite in seeded-batch experiments," Am. Inst. Chem. Engin. J. 50, 2772-2782 (2004). [CrossRef]
  26. J.-P. Andreassen, "Formation mechanism and morphology in precipitation of vaterite — nano-aggregation or crystal growth?" J. Cryst. Growth 274, 256-264 (2005). [CrossRef]
  27. J. D. H. Donnay and G. Donnay, "Optical determination of water content in spherulitic vaterite," Acta Crystallogr. 22, 312-314 (1967). [CrossRef]
  28. H. W. Morse and J. D. H. Donnay, "Optics and structure of three-dimensional spherulites," Am. Mineral. 21, 391-426 (1936).
  29. S. L. Tracy, D. A. Williams, and H. M. Jennings, "The growth of calcite spherulites from solution II. Kinetics of formation," J. Cryst. Growth 193, 382-388 (1998). [CrossRef]
  30. F. C. Meldrum and S. T. Hyde, "Morphological influence of magnesium and organic additives on the precipitation of calcite," J. Cryst. Growth 231, 544-558 (2001). [CrossRef]
  31. H. Cölfen and L. Qi, "A systematic examination of the morphogenesis of calcium carbonate in the presence of a double-hydrophilic block copolymer," Chemistry A Euro. J. 7, 106-116 (2001). [CrossRef]
  32. C. Rodriguez-Navarro, C. Jimenez-Lopez, A. Rodriguez-Navarro, M. T. Gonzalez-Munoz, and M. Rodriguez-Gallego, "Bacterially mediated mineralization of vaterite," Geochim. Cosmochim. Ac. 71, 1197-1213 (2007). [CrossRef]
  33. D. D. P. Davies and G. R. Heal, "Polymorph transition kinetics by DTA," J. Therm. Anal. 13, 473-487 (1978). [CrossRef]
  34. R. E. Gibson, R.W. G. Wyckoff, and H. E. Merwin, "Vaterite and -calcium carbonate," Am. J. Sci. 10, 325-333 (1925). [CrossRef]
  35. O. Söhnel and J. W. Mullin, "Precipitation of calcium carbonate," J. Cryst. Growth 60, 239-250 (1982). [CrossRef]
  36. S. Mann, B. R. Heywood, S. Rajam, and J. D. Birchall, "Controlled crystallisation of CaCO3 under stearic acid monolayers," Nature 334, 692-695 (1988). [CrossRef]
  37. L. Qi, J. Li, and J. Ma, "Biomimetic morphogenesis of calcium carbonate in mixed solutions of surfactants and double-hydrophilic block copolymers," Adv. Mater. 14, 300-303 (2002). [CrossRef]
  38. J. Rudloff, M. Antonietti, H. C¨olfen, J. Pretula, K. Kaluzynski, and S. Penczek, "Double-hydrophilic block copolymers with monophosphate ester moieties as crystal growth modifiers of CaCO3," Macromol. Chem. Physics 203, 627-635 (2002). [CrossRef]
  39. M. Donnet, P. Bowen, N. Jongen, J. Lemaˆıtre, and H. Hofmann, "Use of seeds to control precipitation of calcium carbonate and determination of seed nature," Langmuir 21, 100-108 (2005). [CrossRef]
  40. K. Naka, S.-C. Huang, and Y. Chujo, "Formation of stable vaterite with poly(acrylic acid) by the delayed addition method," Langmuir 22, 7760-7767 (2006). [CrossRef] [PubMed]
  41. J. Rieger, T. Frechen, G. Cox,W. Heckmann, C. Schmidt, and J. Thieme, "Precursor structures in the crystallization/ precipitation processes of caco3 and control of particle formation by polyelectrolytes," Faraday Discuss. 136, 265-277 (2007). [CrossRef] [PubMed]
  42. D. Kralj, L. Breˇcevi’c, and J. Kontrec, "Vaterite growth and dissolution in aqueous solution III. Kinetics of transformation," J. Cryst. Growth 177, 248-257 (1997). [CrossRef]
  43. J. Schlomach, K. Quarch, and M. Kind, "Investigation of precipitation of calcium carbonate at high supersaturations," Chem. Eng. Technol. 29, 215-220 (2006). [CrossRef]
  44. R. Vogel, M. Persson, C. Feng, S. J. Parkin, T. A. Nieminen, B. Wood, N. R. Heckenberg, and H. Rubinsztein-Dunlop, "Synthesis and surface modification of birefringent vaterite microspheres," Langmuir 25, 11672-11679 (2009). [CrossRef] [PubMed]
  45. D. Kralj, L. Breˇcevi’c, and A. E. Nielsen, "Vaterite growth and dissolution in aqueous solution I. Kinetics of crystal growth," J. Cryst. Growth 104, 793-800 (1990). [CrossRef]
  46. J. H. Crichton and P. L. Marston, "The measurable distinction between the spin and orbital angular momenta of electromagnetic radiation," Electron. J. Differ. Equ.Conf. 04, 37-50 (2000).
  47. V. L. Loke, T. A. Nieminen, S. J. Parkin, N. R. Heckenberg, and H. Rubinsztein-Dunlop, "FDFD/T-matrix hybrid method," J. Quant. Spectrosc. Radiat. Transfer 106, 274-284 (2007). [CrossRef]
  48. P. Moon and D. E. Spencer, Field Theory Handbook (Springer-Verlag, Berlin, 1971). [CrossRef]
  49. V. L. Y. Loke, T. A. Nieminen, N. R. Heckenberg, and H. Rubinsztein-Dunlop, "T-matrix calculation via discretedipole approximation, point matching and exploiting symmetry," J. Quant. Spectrosc. Radiat. Transfer 110, 1460-1471 (2009). [CrossRef]
  50. A. L. Patterson, "The Scherrer formula for x-ray particle size determination," Phys. Rev. 56, 978-982 (1939). [CrossRef]
  51. H. P. Klug and L. E. Alexander, X-ray Diffraction Procedures (J. Wiley & Sons, Inc., New York, 1954).
  52. H. J. Meyer, "Bildung und Morphologie des Vaterits," Z. Kristallogr. 121, 220-242 (1965). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited