OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 17, Iss. 24 — Nov. 23, 2009
  • pp: 21977–21985

Thermo-optic locking of a semiconductor laser to a microcavity resonance

T. G. McRae, Kwam H. Lee, M. McGovern, D. Gwyther, and W. P. Bowen  »View Author Affiliations

Optics Express, Vol. 17, Issue 24, pp. 21977-21985 (2009)

View Full Text Article

Enhanced HTML    Acrobat PDF (521 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We experimentally demonstrate thermo-optic locking of a semiconductor laser to an integrated toroidal optical microcavity. The lock is maintained for time periods exceeding twelve hours, without requiring any electronic control systems. Fast control is achieved by optical feedback induced by scattering centers within the microcavity, with thermal locking due to optical heating maintaining constructive interference between the cavity and the laser. Furthermore, the optical feedback acts to narrow the laser linewidth, with ultra high quality microtoroid resonances offering the potential for ultralow linewidth on-chip lasers.

© 2009 OSA

OCIS Codes
(140.4780) Lasers and laser optics : Optical resonators
(140.6810) Lasers and laser optics : Thermal effects
(140.3425) Lasers and laser optics : Laser stabilization

ToC Category:
Lasers and Laser Optics

Original Manuscript: July 13, 2009
Revised Manuscript: October 22, 2009
Manuscript Accepted: November 12, 2009
Published: November 17, 2009

T. G. McRae, K. H. Lee, M. McGovern, D. Gwyther, and W. P. Bowen, "Thermo-optic locking of a semiconductor laser to a microcavity resonance," Opt. Express 17, 21977-21985 (2009)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. S. M. Spillane, T. J. Kippenberg, K. J. Vahala, K. W. Goh, E. Wilcut, and H. J. Kimble, “Ultrahigh-Q toroidal microresonators for cavity quantum electrodynamics,” Phys. Rev. A 71(1), 013817 (2005). [CrossRef]
  2. T. J. Kippenberg, H. Rokhsari, T. Carmon, A. Scherer, and K. J. Vahala, “Analysis of radiation-pressure induced mechanical oscillation of an optical microcavity,” Phys. Rev. Lett. 95(3), 033901 (2005). [CrossRef] [PubMed]
  3. A. Polman, B. Min, J. Kalkman, T. J. Kippenberg, and K. J. Vahala, “Ultra-low-threshold erbium-implanted toroidal microlaser on silicon,” Appl. Phys. Lett. 84(7), 1037–1039 (2004). [CrossRef]
  4. A. M. Armani, R. P. Kulkarni, S. E. Fraser, R. C. Flagan, and K. J. Vahala, “Label-free, single-molecule detection with optical microcavities,” Science 317(5839), 783–787 (2007). [CrossRef] [PubMed]
  5. D. K. Armani, T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, “Ultra-high-Q toroid microcavity on a chip,” Nature 421(6926), 925–928 (2003). [CrossRef] [PubMed]
  6. C. E. Wieman and L. Hollberg, “Using diode lasers for atomic physics,” Rev. Sci. Instrum. 62(1), 1 (1991). [CrossRef]
  7. B. Dahmani, L. Hollberg, and R. Drullinger, “Frequency stabilization of semiconductor lasers by resonant optical feedback,” Opt. Lett. 12(11), 876–878 (1987). [CrossRef] [PubMed]
  8. F. Favre and D. Le Guen, “Spectral properties of a semiconductor laser coupled to a single mode fiber resonator,” IEEE J. Quantum Electron. 21(12), 1937–1946 (1985). [CrossRef]
  9. K. Kieu and M. Mansuripur, “Fiber laser using a microsphere resonator as a feedback element,” Opt. Lett. 32(3), 244–246 (2007). [CrossRef] [PubMed]
  10. A. Schoof, J. Grünert, S. Ritter, and A. Hemmerich, “Reducing the linewidth of a diode laser below 30 Hz by stabilization to a reference cavity with a finesse above 10(5).,” Opt. Lett. 26(20), 1562–1564 (2001). [CrossRef] [PubMed]
  11. D. S. Weiss, V. Sandoghdar, J. Hare, V. Lefèvre-Seguin, J. M. Raimond, and S. Haroche, “Splitting of high-Q Mie modes induced by light backscattering in silica microspheres,” Opt. Lett. 20(18), 1835–1837 (1995). [CrossRef] [PubMed]
  12. H. Rokhsari, S. M. Spillane, and K. J. Vahala, “Loss characterization in microcavities using the thermal bistability effect,” Appl. Phys. Lett. 85(15), 3029–3031 (2004). [CrossRef]
  13. W. P. Bowen, “Semiclassical modelling of cavity quantum electrodynamics with microtoroidal resonators in the weak driving limit,” Curr. Appl. Phys. 8(3-4), 429–432 (2008). [CrossRef]
  14. T. G. McRae and W. P. Bowen, “Time delayed entanglement from coherently coupled nonlinear cavities,” Phys. Rev. A 80, 010303(R) (2009).
  15. M. McGovern, T. G. McRae, G. Turner, A. J. Kay, R. J. Blaikie, and W. P. Bowen, “Laser frequency stabilization with toroidal optical microresonators,” Proc. SPIE 6801, 68010Y–1-68010Y–11 (2008).
  16. T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, “Modal coupling in traveling-wave resonators,” Opt. Lett. 27(19), 1669–1671 (2002). [CrossRef] [PubMed]
  17. T. Carmon, L. Yang, and K. J. Vahala, “Dynamical thermal behavior and thermal self-stability of microcavities,” Opt. Express 12(20), 4742–4750 (2004). [CrossRef] [PubMed]
  18. V. V. Vassiliev, V. L. Velichansky, V. S. Ilchenko, M. L. Gorodetsky, L. Hollberg, and A. V. Yarovitsky, “Narrow-line-width diode laser with a high-Q microsphere resonator,” Opt. Commun. 158(1-6), 305–312 (1998). [CrossRef]
  19. D. Armani, B. Min, A. Martin, and K. J. Vahala, “Electrical thermo-optic tuning of ultrahigh-Q microtoroid resonators,” Appl. Phys. Lett. 85(22), 5439–5441 (2004). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited