OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 17, Iss. 24 — Nov. 23, 2009
  • pp: 22012–22022

Anisotropy and particle-size effects in nanostructured plasmonic metamaterials

I. Romero and F. J. García de Abajo  »View Author Affiliations

Optics Express, Vol. 17, Issue 24, pp. 22012-22022 (2009)

View Full Text Article

Enhanced HTML    Acrobat PDF (1690 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We study the optical properties of metamaterials formed by layers of metallic nanoparticles. The effective optical constants of these materials are retrieved from the calculated angle-dependent Fresnel reflection coefficients for s and p incident-light polarization. We investigate the degree of anisotropy in the effective permittivity as a function of inter-layer spacing, particle size, filling fraction of the metal, and particle shape. For layers of spherical particles periodically arranged in a hexagonal lattice, the anisotropy disappears for the three inter-layer spacings corresponding to simple cubic (sc), bcc, and fcc volume symmetry. For non-spherical particles, an isotropic response can be still obtained with other values of the inter-layer spacing. Finally, we provide a quantitative answer to the question of how many layers are needed to form an effectively homogeneous metamaterial slab. Surprisingly, only one layer can be enough, except in the spectral range close to the particle plasmon resonances.

© 2009 Optical Society of America

OCIS Codes
(240.6680) Optics at surfaces : Surface plasmons
(160.3918) Materials : Metamaterials
(160.4236) Materials : Nanomaterials

ToC Category:

Original Manuscript: August 24, 2009
Revised Manuscript: October 16, 2009
Manuscript Accepted: November 4, 2009
Published: November 17, 2009

Isabel Romero and F. Javier García de Abajo, "Anisotropy and particle-size effects in nanostructured plasmonic metamaterials," Opt. Express 17, 22012-22022 (2009)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. T. J. Yen, W. J. Padilla, N. Fang, D. C. Vier, D. R. Smith, J. B. Pendry, D. N. Basov, and X. Zhang, "Terahertz magnetic response from artificial materials," Science 303, 1494-1496 (2004). [CrossRef] [PubMed]
  2. D. R. Smith, J. B. Pendry, and M. C. K. Wiltshire, "Metamaterials and negative refractive index," Science 305, 788-792 (2004). [CrossRef] [PubMed]
  3. A. Boltasseva and V. M. Shalaev, "Fabrication of optical negative-index metamaterials: Recent advances and outlook," Metamaterials 2, 1-17 (2008). [CrossRef]
  4. J. B. Pendry, "Negative refraction makes a perfect lens," Phys. Rev. Lett. 85, 3966-3969 (2000). [CrossRef] [PubMed]
  5. J. B. Pendry, D. Schurig, and D. R. Smith, "Controlling electromagnetic fields," Science 312, 1780-1782 (2006). [CrossRef] [PubMed]
  6. D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, "Metamaterial electromagnetic cloak at microwave frequencies," Science 314, 977-980 (2006). [CrossRef] [PubMed]
  7. W. S. Cai, U. K. Chettiar, A. V. Kildishev, and V. M. Shalaev, "Optical cloaking with metamaterials," Nat. Photonics 1, 224-227 (2007). [CrossRef]
  8. L. M. Liz-Marzan, "Tailoring surface plasmon through the morphology and assembly of metal nanoparticles," Langmuir 22, 32-41 (2006). [CrossRef]
  9. A. Taleb, V. Russier, A. Courty, and M. P. Pileni, "Collective optical properties of silver nanoparticles organized in two-dimensional superlattices," Phys. Rev. B 59, 13,350-13,358 (1999). [CrossRef]
  10. D. Zanchet, M. S. Moreno, and D. Ugarte, "Anomalous packing in thin nanoparticle supercrystals," Phys. Rev. Lett. 82, 5277-5280 (1999). [CrossRef]
  11. M. Gadenne, V. Podolskiy, P. Gadenne, P. Sheng, and V. M. Shalaev, "Plasmon-enhanced absorption by optical phonons in metal-dielectric composites," Europhys. Lett. 53, 364-370 (2001). [CrossRef]
  12. F. Caruso, M. Spasova, V. S. no Maceira, and L. M. Liz-Marzan, "Multilayer assemblies of silica-encapsulated gold nanoparticles on decomposable colloid templates," Adv. Mater. 13, 1090-1094 (2001). [CrossRef]
  13. T. Ung, L. M. Liz-Marzan, and P. Mulvaney, "Optical properties of thin films of Au@SiO2 particles," J. Phys. Chem. B 105, 3441-3452 (2001). [CrossRef]
  14. H. Fan, K. Yang, D. M. Boye, T. Sigmon, K. J. Malloy, H. Xu, G. P. Lopez, and C. J. Brinker, "Self-assymbly of ordered, robust, three-dimensional gold nanocrystal/silica arrays," Science 304, 567 (2004). [CrossRef] [PubMed]
  15. H. Contopanagos, C. A. Kyriazidou, W. M. Merrill, and N. G. Alexopoulos, "Effective response functions for photonic bandgap materials," J. Opt. Soc. Am. A 16, 1682-1699 (1999). [CrossRef]
  16. Z. Wang, C. T. Chan, W. Zhang, N. Ming, and P. Sheng, "Three-dimensional self -assembly of metal nanoparticles: Possible photonic crystal with a complete gap below the plasma frequency," Phys. Rev. B 64, 113,108 (2001). [CrossRef]
  17. A. A. Zakhidov, R. H. Baughman, I. I. Khayrullin, I. A. Udad, M. Kozlov, N. Eradat, V. Z. Vardeny, M. Sigalas, and R. Biswas, "Three-dimensionally periodic conductive nanostructures: network versus cermet topologies for metallic PGB," Synthetic Metals 116, 419-426 (2001). [CrossRef]
  18. P. Xu and Z. Li, "Study of frequency band gaps in metal-dielectric composite materials," J. Phys. D 37, 1718-1724 (2004). [CrossRef]
  19. C. R. Simovski and S. A. Tretyakov, "Local constitutive parameters of metamaterials from an effective-medium perspective," Phys. Rev. B 75, 195,111 (2007). [CrossRef]
  20. J. D. Jackson, Classical Electrodynamics (Wiley, New York, 1999).
  21. J. C. Maxwell-Garnett, Philos. Trans. R. Soc. London, Ser. A 203, 385 (1904); 205, 237 (1906). [CrossRef]
  22. D. A. G. Bruggeman, "Calculation of various physics constants in heterogenous substances. Dielectricity constants and conductivity of mixed bodies from isotropic substances," Ann. Phys. (Leipzig) 24, 636-664 (1935).
  23. M. F. MacMilland, R. P. Devaty, and J. V. Mantese, "Infrared properties of Pt/Al2O3 cermet films," Phys. Rev. B 43, 13,838-13,845 (1991).
  24. R. Sainidou and F. J. Garcıa de Abajo, "Plasmon guided modes in nanoparticle metamaterials," Opt. Express 16, 4499-4506 (2008). [CrossRef] [PubMed]
  25. D. J. Bergman, "Dielectric constant of a two-component granular composite: A practical scheme for calculating the pole spectrum," Phys. Rev. B 19, 2359-2368 (1979). [CrossRef]
  26. P. Sheng, "Theory for the dielectric function of granular composite media," Phys. Rev. Lett. 45, 60-63 (1980). [CrossRef]
  27. G. W. Milton, "Bounds and exact theories for the transport properties of inhomogeneous media," Appl. Phys. A-Mater. Sci. Process. 26, 207-220 (1981). [CrossRef]
  28. R. Fuchs, R. G. Barrera, and J. L. Carrillo, "Spectral representations of the electron energy loss in composite media," Phys. Rev. B 54, 12,824-12,834 (1996). [CrossRef]
  29. D. R. McKenzie and R. C. McPhedran, "Exact modeling of cubic lattice permittivity and conductivity," Nature 265, 128-129 (1977). [CrossRef]
  30. R. C. McPhedran and D. R. McKenzie, "The conductivity of lattices of spheres. I. The simple cubic lattices," Proc. R. Soc. London, Ser. A 359, 45-63 (1978). [CrossRef]
  31. D. R. McKenzie, R. C. McPhedran, and G. H. Derrick, "The conductivity of lattices of spheres. II. The body centred and face centred cubic lattices," Proc. R. Soc. London, Ser. A 362, 211-232 (1978). [CrossRef]
  32. F. Wu and K. W. Whites, "Quasi-static effective permittivity of periodic composites containing complex shaped dielectric particles," IEEE Trans. Antennas Propag. 49, 1174-1182 (2001). [CrossRef]
  33. K. W. Whites and F. Wu, "Effects of particle shape on the effective permittivity of composite materials with measurements for lattices of cubes," IEEE Trans. Microw. Theory Tech. 50, 1723-1729 (2002). [CrossRef]
  34. S. B. Jones and S. P. Friedman, "Particle shape effects on the effective permittivity of anisotropic or isotropic media consisiting of aligned or randomly oriented ellipsoidal particles," Water Resour. Res. 36, 2821-2833 (2000). [CrossRef]
  35. A. H. Sihvola and I. V. Lindell, "Chiral Maxwell-Garnett mixing formula," Electron. Lett. 26, 118-119 (1990). [CrossRef]
  36. J. S. Ahn, K. H. Kim, T. W. Noh, D. H. Riu, K. H. Boo, and H. E. Kim, "Effective-medium theories for spheroidal particles randomly oriented on a plane: Application to the optical properties of a SiC whisker-Al2O3 composite," Phys. Rev. B 52, 15,244-15,252 (1995).
  37. R. G. Barrera and R. Fuchs, "Theory of electron energy loss in a random system of spheres," Phys. Rev. B 52, 3256-3273 (1995). [CrossRef]
  38. N. Stefanou, V. Yannopapas, and A. Modinos, Comput. Phys. Commun. 113, 49 (1998); 132, 189 (2000). [CrossRef]
  39. N. Stefanou, V. Yannopapas, and A. Modinos, "MULTEM 2: A new version of the program for transmission and band-structure calculations of photonic crystals," Comput. Phys. Commun. 132, 189-196 (2000). [CrossRef]
  40. S. Riikonen, I. Romero, and F. J. Garcıa de Abajo, "Plasmon tunability in metallodielectric metamaterials," Phys. Rev. B 71, 235,104 (2005). [CrossRef]
  41. P. B. Johnson and R. W. Christy, "Optical constants of the noble metals," Phys. Rev. B 6, 4370-4379 (1972). [CrossRef]
  42. E. D. Palik, Handbook of Optical Constants of Solids (Academic Press, New York, 1985).
  43. D. R. Smith, S. Schultz, P. Markos, and C. M. Soukoulis, "Determination of effective permittivity and permeability of metamaterials from reflection and transmission coefficients," Phys. Rev. B 65, 195,104 (2002). [CrossRef]
  44. U. Kreibig and M. Vollmer, Optical Properties of Metal Clusters (Springer-Verlag, Berlin, 1995).
  45. F. J. Garcıa de Abajo, "Nonlocal effects in the plasmons of strongly interacting nanoparticles, dimers, and waveguides," J. Phys. Chem. C 112, 17,983-17,987 (2008). [CrossRef]
  46. R. F. Egerton, Electron Energy-Loss Spectroscopy in the Electron Microscope (Plenum Press, New York, 1996).
  47. F. J. Garcıa de Abajo and A. Howie, "Relativistic electron energy loss and electron-induced photon emission in inhomogeneous dielectrics," Phys. Rev. Lett. 80, 5180-5183 (1998). [CrossRef]
  48. F. J. Garcıa de Abajo and A. Howie, "Retarded field calculation of electron energy loss in inhomogeneous dielectrics," Phys. Rev. B 65, 115,418 (2002). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited