OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 17, Iss. 24 — Nov. 23, 2009
  • pp: 22047–22053

Hartmann-Shack wavefront sensing for nonlinear materials characterization

D. Rativa, R. E. de Araujo, A. S. Gomes, and B. Vohnsen  »View Author Affiliations


Optics Express, Vol. 17, Issue 24, pp. 22047-22053 (2009)
http://dx.doi.org/10.1364/OE.17.022047


View Full Text Article

Acrobat PDF (319 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We present two new techniques exploiting a Hartmann-Shack wavefront sensor to characterize the optical self-focusing effect of nonlinear materials. We demonstrate that the defocus Zernike coefficient (C5) can be used to quantify nonlinear optical properties of materials. In the first technique proposed, the wavefront of a collimated laser beam transmitted through a nonlinear sample is analyzed with different irradiance values. In the second technique,instead of conventional detectors, a Hartmann- Shack sensor is used in a Z-scan setup. The methods are demonstrated by measuring the nonlinear refractive indices of CS2 and Quartz, using femtosecond Ti:sapphire lasers at 76MHz and 1KHz repetition rate.

© 2009 Optical Society of America

OCIS Codes
(010.7350) Atmospheric and oceanic optics : Wave-front sensing
(190.4400) Nonlinear optics : Nonlinear optics, materials
(280.4788) Remote sensing and sensors : Optical sensing and sensors

ToC Category:
Nonlinear Optics

History
Original Manuscript: October 5, 2009
Revised Manuscript: November 6, 2009
Manuscript Accepted: November 6, 2009
Published: November 17, 2009

Citation
D. Rativa, R. E. de Araujo, A. S. Gomes, and B. Vohnsen, "Hartmann-Shack wavefront sensing for nonlinear materials characterization," Opt. Express 17, 22047-22053 (2009)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-17-24-22047


Sort:  Author  |  Year  |  Journal  |  Reset

References

  1. R. E. de Araujo and A. S. L. Gomes, "Nonlinear optical Kerr coefficients of disordered media," Phys. Rev. A 57, 2037-2040 (1998). [CrossRef]
  2. H. Ma, A. S. L. Gomes, and C. B. de Araújo, "Measurements of nondegenerate optical nonlinearity using a two-color single beam method," Appl. Phys. Lett. 59, 2666-2668 (1991). [CrossRef]
  3. M. Sheik-Bahae, A. A. Said, T. H. Wei, D. J. Hagan, and E. W. Van Stryland, "Sensitive measurements of optical nonlinearities using a single beam," Quantum Electron. 26, 760-769 (1990). [CrossRef]
  4. T. Xia, D. J. Hagan, M. Sheik-Bahae, and E. W. Van Stryland, "Eclipsing Z-scan measurement of λ /104 wavefront distortion," Opt. Lett. 19, 317-319 (1994). [CrossRef]
  5. J. Wang, M. Sheik-Bahae, A. A. Said, D. J. Hagan, and E. W. Van Stryland, "Time resolved Z-scan measurements of optical nonlinearities," J. Opt. Soc. Am. B. 11, 1009-1017 (1994). [CrossRef]
  6. M. Falconieri and G. Salvetti, "Simultaneous measurement of pure-optical and thermo-optical nonlinearities induced by high-repetition-rate, femtosecond laser pulses: application to CS2," Appl. Phys. B 69, 133-136 (1999). [CrossRef]
  7. A. S. L. Gomes, E. L. Filho, C. B. de Araújo, D. Rativa, and R. E. de Araujo, "Thermally managed eclipse Z-scan," Opt. Express 15, 1712-1717 (2007). [CrossRef]
  8. R. E. de Araujo, A. S. L. Gomes, and C. B. de Araújo, "Measurements of pKa of organic molecules using third-order nonlinear optics," Chem. Phys. Lett. 330, 347-353 (2000). [CrossRef]
  9. D. Rativa, R. E. de Araujo, C. B. de Araújo, A. S. L. Gomes, and L. Kassab, "Femtosecond nonlinear optical properties of lead-germanium oxide amorphous films," Appl. Phys. Lett. 90, 231906-231909 (2007). [CrossRef]
  10. D. Rativa, R. E. de Araujo, and A. S. L. Gomes, "One photon nonresonant high-order nonlinear optical properties of silver nanoparticles in aqueous solution," Opt. Express 16, 19244-19252 (2008). [CrossRef]
  11. B. Vohnsen and S. I. Bozhevolnyi, "Near- and far-field second-harmonic imaging of quasi-phase-matching crystals," J. Microsc. 202, 244-249 (2001). [CrossRef]
  12. D. Rativa, A. S. L. Gomes, S. Wachsmann-Hogiu, D. L. Farkas, and R. E. de Araujo, "Nonlinear Excitation of Tryptophan Emission Enhanced by Silver Nanoparticles," J. Fluoresc. 18, 1151-1155 (2008). [CrossRef]
  13. Q. Yang, J. Seo, S. Creekmore, D. Temple, A. Mott, N. Min, K. Yoo, S. Kim, and S. Jung, "Distortions in Z-scan spectroscopy," Appl. Phys. Lett. 82, 19-21 (2003). [CrossRef]
  14. D. Malacara, Optical Shop testing 2nd Ed. (John Wiley & Sons, Inc., New York, 1992).
  15. A. Roorda, F. Romero-Borja, W. Donnelly, H. Queener, T. Hebert, and M. Campbell, "Adaptive optics scanning laser ophthalmoscopy," Opt. Express 10, 405-412 (2002).
  16. B. Vohnsen, I. Iglesias, and P. Artal, "Confocal scanning laser ophthalmoscope with adaptive optical wavefront correction," Proc. SPIE. 4964, 24-32 (2003).
  17. J. Bueno, B. Vohnsen, L. Roso, and P. Artal, "Temporal wavefront stability of an ultrafast high-power laser beam," Appl. Opt. 48, 770-777, (2009). [CrossRef]
  18. V. Mahajan, Optical Imaging and Aberrations: Part I. Ray Geometrical Optics (SPIE Press, Washington, 2001).
  19. R. Boyd, Nonlinear Optics Third Edition. (Elsevier Science & Technology Books, New York 2008).
  20. P. Chen, D. A. Oulianov, I. V. Tomov, and P. M. Rentzepis, "Two-dimensional Z scan for arbitrary beam shape and sample thickness," J. Appl. Phys. 85, 7043-7050 (1999). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited