OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 17, Iss. 24 — Nov. 23, 2009
  • pp: 22054–22061

Detection of counterfeit U.S. paper money using intrinsic fluorescence lifetime

Thomas H. Chia and Michael J. Levene  »View Author Affiliations


Optics Express, Vol. 17, Issue 24, pp. 22054-22061 (2009)
http://dx.doi.org/10.1364/OE.17.022054


View Full Text Article

Enhanced HTML    Acrobat PDF (377 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Genuine U.S. Federal Reserve Notes have a consistent, two-component intrinsic fluorescence lifetime. This allows for detection of counterfeit paper money because of its significant differences in fluorescence lifetime when compared to genuine paper money. We used scanning two-photon laser excitation and the time-correlated single photon counting (TCSPC) method to sample a ~4 mm2 region. Three types of counterfeit samples were tested. Four out of the nine counterfeit samples fit to a one-component decay. Five out of nine counterfeit samples fit to a two-component model, but are identified as counterfeit due to significant deviations in the longer lifetime component compared to genuine bills.

© 2009 OSA

OCIS Codes
(170.3650) Medical optics and biotechnology : Lifetime-based sensing
(190.0190) Nonlinear optics : Nonlinear optics
(300.2530) Spectroscopy : Fluorescence, laser-induced

ToC Category:
Nonlinear Optics

History
Original Manuscript: October 2, 2009
Revised Manuscript: November 6, 2009
Manuscript Accepted: November 11, 2009
Published: November 17, 2009

Citation
Thomas H. Chia and Michael J. Levene, "Detection of counterfeit U.S. paper money using intrinsic fluorescence lifetime," Opt. Express 17, 22054-22061 (2009)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-17-24-22054


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. W. Becker, The bh TCSPC Handbook (Becker & Hickl, 2008).
  2. K. Suhling, P. M. French, and D. Phillips, “Time-resolved fluorescence microscopy,” Photochem. Photobiol. Sci. 4(1), 13–22 (2005). [CrossRef] [PubMed]
  3. T. H. Chia, A. Williamson, D. D. Spencer, and M. J. Levene, “Multiphoton fluorescence lifetime imaging of intrinsic fluorescence in human and rat brain tissue reveals spatially distinct NADH binding,” Opt. Express 16(6), 4237–4249 (2008). [CrossRef] [PubMed]
  4. R. Cubeddu, D. Comelli, C. D’Andrea, P. Taroni, and G. Valentini, “Time-resolved fluorescence imaging in biology and medicine,” J. Phys. D Appl. Phys. 35(9), R61–R76 (2002). [CrossRef]
  5. T. Q. Ni and L. A. Melton, “Two-dimensional gas-phase temperature measurements using fluorescence lifetime imaging,” Appl. Spectrosc. 50(9), 1112–1116 (1996). [CrossRef]
  6. D. Comelli, G. Valentini, R. Cubeddu, and L. Toniolo, “Fluorescence lifetime imaging and Fourier transform infrared spectroscopy of Michelangelo’s David,” Appl. Spectrosc. 59(9), 1174–1181 (2005). [CrossRef] [PubMed]
  7. M. Suzuki, “Development of a simple and non-destructive examination for counterfeit coins using acoustic characteristics,” Forensic Sci. Int. 177(1), e5–e8 (2008). [CrossRef] [PubMed]
  8. V. Rusanov, K. Chakarova, and T. Madolev, “Mössbauer spectroscopy investigation of the properties and stability of dollar bank note pigments,” Appl. Spectrosc. 56(9), 1228–1236 (2002). [CrossRef]
  9. W. Denk, J. H. Strickler, and W. W. Webb, “Two-photon laser scanning fluorescence microscopy,” Science 248(4951), 73–76 (1990). [CrossRef] [PubMed]
  10. W. R. Zipfel, R. M. Williams, and W. W. Webb, “Nonlinear magic: multiphoton microscopy in the biosciences,” Nat. Biotechnol. 21(11), 1369–1377 (2003). [CrossRef] [PubMed]
  11. W. Becker, A. Bergmann, M. A. Hink, K. König, K. Benndorf, and C. Biskup, “Fluorescence lifetime imaging by time-correlated single-photon counting,” Microsc. Res. Tech. 63(1), 58–66 (2004). [CrossRef] [PubMed]
  12. R. Judson, and R. Porter, “Estimating the worldwide volume of counterfeit U.S. currency: data and extrapolation,” FEDs Working Paper No. 2003–52 (2003).
  13. D. Comelli, C. D’Andrea, G. Valentini, R. Cubeddu, C. Colombo, and L. Toniolo, “Fluorescence lifetime imaging and spectroscopy as tools for nondestructive analysis of works of art,” Appl. Opt. 43(10), 2175–2183 (2004). [CrossRef] [PubMed]
  14. J. Cameron, J. Marengo, R. Judson, and J. Pruiksma, “The use and counterfeiting of United States currency abroad, part 3,” presented to United States Congress by the Secretary of the Treasury, Sept. 2006.
  15. Q. S. Hanley, D. J. Arndt-Jovin, and T. M. Jovin, “Spectrally resolved fluorescence lifetime imaging microscopy,” Appl. Spectrosc. 56(2), 155–166 (2002). [CrossRef]
  16. D. K. Bird, K. W. Eliceiri, C. H. Fan, and J. G. White, “Simultaneous two-photon spectral and lifetime fluorescence microscopy,” Appl. Opt. 43(27), 5173–5182 (2004). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited