OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 17, Iss. 24 — Nov. 23, 2009
  • pp: 22062–22072

Conjugated polymer-fullerene blend with strong optical limiting in the near-infrared

San-Hui Chi, Joel M. Hales, Matteo Cozzuol, Charles Ochoa, Madison Fitzpatrick, and Joseph W. Perry  »View Author Affiliations


Optics Express, Vol. 17, Issue 24, pp. 22062-22072 (2009)
http://dx.doi.org/10.1364/OE.17.022062


View Full Text Article

Enhanced HTML    Acrobat PDF (627 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Optical-quality, melt processable thick films of a conjugated polymer blend containing poly(2-methoxy-5-(2-ethyl-hexyloxy)-(phenylene vinylene)) (MEH-PPV), a C60 derivative (PCBM) and a plasticizer (1,2-di-iso-octylphthalate) have been developed and their nonlinear absorption and optical limiting properties have been investigated. These blend materials exhibited strong optical limiting characteristics in the near infrared region (750-900 nm), with broad temporal dynamic range spanning femtosecond to nanosecond pulse widths. The dispersion of the optical limiting figure-of-merit of the MEH-PPV:PCBM:DOP blend shows a peak near the wavelength of the MEH-PPV cation, indicating an important role of one-photon and two-photon induced charge transfer in the nonlinear absorption response.

© 2009 OSA

OCIS Codes
(160.0160) Materials : Materials
(160.4330) Materials : Nonlinear optical materials
(160.4890) Materials : Organic materials
(190.0190) Nonlinear optics : Nonlinear optics
(190.4180) Nonlinear optics : Multiphoton processes
(190.4710) Nonlinear optics : Optical nonlinearities in organic materials

ToC Category:
Materials

History
Original Manuscript: October 12, 2009
Manuscript Accepted: November 12, 2009
Published: November 17, 2009

Citation
San-Hui Chi, Joel M. Hales, Matteo Cozzuol, Charles Ochoa, Madison Fitzpatrick, and Joseph W. Perry, "Conjugated polymer-fullerene blend with strong optical limiting in the near-infrared," Opt. Express 17, 22062-22072 (2009)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-17-24-22062


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. J. E. Geusic, S. Singh, D. W. Tipping, and T. C. Rich, “3-photon stepwise optical limiting in silicon,” Phys. Rev. Lett. 19(19), 1126–1128 (1967). [CrossRef]
  2. J. W. Perry, K. Mansour, I. Y. S. Lee, X. L. Wu, P. V. Bedworth, C. T. Chen, D. Ng, S. R. Marder, P. Miles, T. Wada, M. Tian, and H. Sasabe, “Organic optical limiter with a strong nonlinear absorptive response,” Science 273(5281), 1533–1536 (1996). [CrossRef]
  3. L. W. Tutt and A. Kost, “Optical limiting performance of C60 and C70 solutions,” Nature 356(6366), 225–226 (1992). [CrossRef]
  4. J. W. Perry, Organic and metal-containing reverse saturable absorbers for optical limiters (CRC Press INC, Boca Raton, FL, 1997).
  5. G. S. He, C. Weder, P. Smith, and P. N. Prasad, “Optical power limiting and stabilization based on a novel polymer compound,” IEEE J. Quantum Electron. 34(12), 2279–2285 (1998). [CrossRef]
  6. G. S. He, L. X. Yuan, J. D. Bhawalkar, and P. N. Prasad, “Optical limiting, pulse reshaping, and stabilization with a nonlinear absorptive fiber system,” Appl. Opt. 36(15), 3387–3392 (1997). [CrossRef] [PubMed]
  7. P. F. Moulton, “Spectroscopic and laser characteristics of TiAl2O3,” J. Opt. Soc. Am. B 3(1), 125–133 (1986). [CrossRef]
  8. M. Cha, N. S. Saricftci, A. J. Heeger, J. C. Hummelen, and F. Wudl, “Enhanced nonlinear absorption and optical limiting in semiconducting polymer/methanofullerene charge transfer films,” Appl. Phys. Lett. 67(26), 3850–3852 (1995). [CrossRef]
  9. J. E. Ehrlich, X. L. Wu, I. Y. S. Lee, Z. Y. Hu, H. Röckel, S. R. Marder, and J. W. Perry, “Two-photon absorption and broadband optical limiting with bis-donor stilbenes,” Opt. Lett. 22(24), 1843–1845 (1997). [CrossRef] [PubMed]
  10. J. M. Hales, M. Cozzuol, T. E. O. Screen, H. L. Anderson, and J. W. Perry, “Metalloporphyrin polymer with temporally agile, broadband nonlinear absorption for optical limiting in the near infrared,” Opt. Express 17(21), 18478–18488 (2009). [CrossRef]
  11. J. W. Perry, S. Barlow, J. E. Ehrlich, A. A. Heikal, Z. Y. Hu, I. Y. S. Lee, K. Mansour, S. R. Marder, H. Rockel, M. Rumi, S. Thayumanavan, and X. L. Wu, “Two-photon and higher-order absorptions and optical limiting properties of bis-donor substituted conjugated organic chromophores,” Nonlinear Opt. 21, 225–243 (1999).
  12. B. Kraabel, D. McBranch, N. S. Sariciftci, D. Moses, and A. J. Heeger, “Ultrafast spectroscopic studies of photoinduced electron transfer from semiconducting polymers to C60,” Phys. Rev. B 50(24), 18543–18552 (1994). [CrossRef]
  13. C. J. Brabec, N. S. Sariciftci, and J. C. Hummelen, “Plastic solar cells,” Adv. Funct. Mater. 11(1), 15–26 (2001). [CrossRef]
  14. N. S. Sariciftci, L. Smilowitz, A. J. Heeger, and F. Wudl, “Photoinduced electron transfer from a conducting polymer to buckminsterfullerene,” Science 258(5087), 1474–1476 (1992). [CrossRef] [PubMed]
  15. D. Moses, A. Dogariu, and A. J. Heeger, “Mechanism of carrier generation and recombination in conjugated polymers,” Synth. Met. 116(1-3), 19–22 (2001). [CrossRef]
  16. T. Kato, T. Kodama, and T. Shida, “Electronic absorption spectra of the radical anions and cations of fullerenes: C60 and C70,” Chem. Phys. Lett. 180(5), 446–450 (1991). [CrossRef]
  17. P. A. van Hal, M. P. T. Christiaans, M. M. Wienk, J. M. Kroon, and R. A. J. Janssen, “Photoinduced electron transfer from conjugated polymers to TiO,” J. Phys. Chem. B 103(21), 4352–4359 (1999). [CrossRef]
  18. S.-J. Chung, G. S. Maciel, H. E. Pudavar, T.-C. Lin, G. S. He, J. Swiatkiewicz, P. N. Prasad, D. W. Lee, and J.-I. Jin, “Two-photon properties and excitation dynamics of poly(p-phenylenevinylene) derivatives carrying phenylanthracene and branched alkoxy pendents,” J. Phys. Chem. A 106(33), 7512–7520 (2002). [CrossRef]
  19. A. Samoc, M. Samoc, M. Woodruff, and B. Luther-Davies, “Tuning the properties of poly(p-phenylenevinylene) for use in all-optical switching,” Opt. Lett. 20(11), 1241–1243 (1995). [CrossRef] [PubMed]
  20. A. Dogariu, D. Vacar, and A. J. Heeger, “Picosecond time-resolved spectroscopy of the excited state in a soluble derivative of poly(phenylene vinylene): Origin of the bimolecular decay,” Phys. Rev. B 58(16), 10218–10224 (1998). [CrossRef]
  21. L. Smilowitz and A. J. Heeger, “Photoinduced absorption from triplet excitations in poly(2-methoxy-5-(2'-ethyl-hexyloxy)-p-phenylene vinylene) oriented by gel-processing in polyethylene,” Synth. Met. 48(2), 193–202 (1992). [CrossRef]
  22. K. Vandewal, A. Gadisa, W. D. Oosterbaan, S. Bertho, F. Banishoeib, I. Van Severen, L. Lutsen, T. J. Cleij, D. Vanderzande, and J. V. Manca, “The relation between open-circuit voltage and the onset of photocurrent generation by charge-transfer absorption in polymer: Fullerene bulk heterojunction solar cells,” Adv. Funct. Mater. 18(14), 2064–2070 (2008). [CrossRef]
  23. T. W. Ebbesen, K. Tanigaki, and S. Kuroshima, “Excited-state properties of C60,” Chem. Phys. Lett. 181(6), 501–504 (1991). [CrossRef]
  24. T. Drori, C. X. Sheng, A. Ndobe, S. Singh, J. Holt, and Z. V. Vardeny, “Below-gap excitation of π-conjugated polymer-Fullerene blends: implications for bulk organic heterojunction solar cells,” Phys. Rev. Lett. 101(3), 037401–037404 (2008). [CrossRef] [PubMed]
  25. J. Nelson, “Diffusion-limited recombination in polymer-fullerene blends and its influence on photocurrent collection,” Phys. Rev. B 67(15), 155209–155218 (2003). [CrossRef]
  26. W. Holzer, A. Penzkofer, H. Tillmann, and H.-H. Hörhold, “Spectroscopic and travelling-wave lasing characterisation of gilch-type and horner-type MEH-PPV,” Synth. Met. 140(2-3), 155–170 (2004). [CrossRef]
  27. H. L. Chou, K. F. Lin, and D. C. Wang, “Miscibility and luminescence properties of MEH-PPV/DPO-PPV polyblends,” J. Polym. Res. 13(1), 79–84 (2006). [CrossRef]
  28. J. Shinar, Z. V. Vardeny, and Z. H. Kafafi, eds., Optical and electronic properties of fullerenes and fullerene-based materials (Marcel Dekker, Inc., New York, NY, 2000).
  29. A. A. Bakulin, D. S. Martyanov, D. Y. Paraschuk, M. S. Pshenichnikov, and P. H. M. van Loosdrecht, “Ultrafast charge photogeneration dynamics in ground-state charge-transfer complexes based on conjugated polymers,” J. Phys. Chem. B 112(44), 13730–13737 (2008). [CrossRef] [PubMed]
  30. L. Goris, A. Poruba, L. Hod'akova, M. Vanecek, K. Haenen, M. Nesladek, P. Wagner, D. Vanderzande, L. De Schepper, and J. V. Manca, “Observation of the subgap optical absorption in polymer-fullerene blend solar cells,” Appl. Phys. Lett. 88(5), 052113 (2006). [CrossRef]
  31. Y. Lin, J. Zhang, L. Brzozowski, E. H. Sargent, and E. Kumacheva, “Nonlinear optical figures of merit of processible composite of poly(2-methoxy,5-(2'-(ethyl)hexyloxy)-p-phenylene vinylene) and poly(methyl methacrylate),” J. Appl. Phys. 91(1), 522–524 (2002). [CrossRef]
  32. E. W. Van Stryland, Y. Y. Wu, D. J. Hagan, M. J. Soileau, and K. Mansour, “Optical limiting with semiconductors,” J. Opt. Soc. Am. B 5(9), 1980–1989 (1988). [CrossRef]
  33. H. Jiang, M. DeRosa, W. Su, M. Brant, D. McLean, and T. Bunning, “Polymer host materials for optical limiting,” Proc. SPIE 3472, 157–162 (1998). [CrossRef]
  34. R. C. Hollins, “Materials for optical limiters,” Curr. Opin. Solid State Mater. Sci. 4(2), 189–196 (1999). [CrossRef]
  35. A. Kost, L. Tutt, M. B. Klein, T. K. Dougherty, and W. E. Elias, “Optical limiting with C(60) in polymethyl methacrylate,” Opt. Lett. 18(5), 334–336 (1993). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited