OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 17, Iss. 24 — Nov. 23, 2009
  • pp: 22081–22095

A low bending loss multimode fiber transmission system

Denis Donlagic  »View Author Affiliations

Optics Express, Vol. 17, Issue 24, pp. 22081-22095 (2009)

View Full Text Article

Enhanced HTML    Acrobat PDF (518 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



This paper presents a high bend tolerant multimode optical fiber transmission system that is compatible with standard 50 µm graded index multimode fiber, in terms of achievable bandwidth and interconnectivity losses. When the 10 loops of the proposed bend resistive multimode fiber were wrapped around a cylinder of 1.5 mm radius, bend losses below -0.2 dB were achieved in case of experimentally produced fiber. Furthermore, when the section of the proposed bend resistive fiber was inserted between two sections of a standard 50 µm graded index multimode fiber, the total experimental measured loss proved to be below -0.15 dB.

© 2009 Optical Society of America

OCIS Codes
(060.0060) Fiber optics and optical communications : Fiber optics and optical communications
(060.2280) Fiber optics and optical communications : Fiber design and fabrication
(060.2310) Fiber optics and optical communications : Fiber optics
(060.2400) Fiber optics and optical communications : Fiber properties

ToC Category:
Fiber Optics and Optical Communications

Original Manuscript: July 9, 2009
Revised Manuscript: October 7, 2009
Manuscript Accepted: October 25, 2009
Published: November 18, 2009

Denis Donlagic, "A Low Bending Loss Multimode Fiber Transmission System," Opt. Express 17, 22081-22095 (2009)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. D. Marcuse, "Curvature loss formula for optical fibers," J. Opt. Soc. Am. 66, 216-220 (1976). [CrossRef]
  2. D. Marcuse, "Field deformation and loss caused by curvature of optical fibres," J. Opt. Soc. Am. 66, 311-320 (1976). [CrossRef]
  3. W. A. Gambling, H. Matsumura, C. M. Ragdale, and R. A. Sammut, "Measurement of radiation loss in curved singlemode fibres," Microwaves, Opt. Acoust. 2, 134-140 (1978). [CrossRef]
  4. E. G. Neumann and W. Richter, "Sharp bends with low losses in dielectric optical waveguides," Appl. Opt. 22, 1016-1022 (1983). [CrossRef] [PubMed]
  5. A. J. Harris and P. F. Castle, "Bend Loss Measurements on High Numerical Aperture Single-Mode Fibres as a Function of Wavelength and Bend Radius," J. Lightwave Technol. 4, 34-40 (1986). [CrossRef]
  6. R. C. Gauthier and C. Ross, "Theoretical and experimental consideration for single-mode fibre optic bend-type sensors," Appl. Opt. 36, 6264-6273 (1997). [CrossRef]
  7. L. Faustini and G. Martini, "Bend loss in single-mode fibers," J. Lightwave Technol. 15, 671-679 (1997). [CrossRef]
  8. D. Donlagic and B. Culshaw, "Low-loss transmission through tightly bent standard telecommunication fibers," Appl. Phys. Lett. 77,3911-3913 (2000). [CrossRef]
  9. N. Healy and C. D. Hussey, "Minimizing bend loss by removing material inside the caustic in bent single-mode fibers," Appl. Opt. 45, 4219-4222 (2006). [CrossRef] [PubMed]
  10. G. B. Ren, P. Shum P, L. R. Zhang, M. Yan, X. Yu, W. Tong, and J. Luo, "Design of all-solid bandgap fiber with improved confinement and bend losses," Photon. Technol. Lett. 18, 2560-2562 (2006). [CrossRef]
  11. C. Martelli, J. Canning, B. Gibson, and S. Huntington, "Bend loss in structured optical fibres," Opt. Express 15,17639-17644 (2007). [CrossRef] [PubMed]
  12. P. R. Watekar, S. Ju, Y. S. Yoon, Y. S. Lee, and W. T. Han, "Design of a trenched bend insensitive single mode optical fiber using spot size definitions, Opt. Express 16, 13545-13551 (2008). [CrossRef] [PubMed]
  13. D. Gloge, "Bending Loss in Multimode Fibers with Graded and Ungraded Core Index," Appl. Opt. 11,2506-2513 (1972). [CrossRef] [PubMed]
  14. M. Y. Loke and J. N. McMullin, "Simulation and measurement of radiation loss at multimode fiber macrobends," J. Lightwave Technol. 8, 1250 - 1256 (1990). [CrossRef]
  15. M. Skorobogatiy, K. Saitoh, and M. Koshiba, "Full-vectorial coupled mode theory for the evaluation of macro-bending loss in multimode fibers. application to the hollow-core photonic bandgap fibers," Opt. Express 16, 14945-14953 (2008). [CrossRef] [PubMed]
  16. G. Ning, T. Katsuhiro, I. Katsuaki, A. Kazuhiko, and H. Kuniharu, "Hole-assisted holey fiber and low bending loss multimode holey fiber," US Patent. 7,292,762 (2007).
  17. K. Yasushi, T. Katsuhiro, and H. Kuniharu, "Low bending loss multimode fiber," JP Patent Appl. Publ. JP2006047719 (2006).
  18. http://www.corning.com/opticalfiber/products/clearcurve_multimode_fiber.aspx
  19. D. Marcuse, "Derivation of Coupled Power Equations," Bell Syst. Tech. J. 51, 229-237, (1972).
  20. D. Marcuse, "Coupled Mode Theory of Round Optical Fiber," Bell Syst. Tech. J. 52, 817-842 (1973).
  21. R. Olshansky, "Mode coupling effects in graded-index optical fibers," Appl. Opt. 14, 935-945 (1975). [PubMed]
  22. N. Lagakos, J. H. Cole, and J. A. Bucaro, "Microbend fiber-optic sensor," Appl. Opt. 26, 2171-2180 (1987). [CrossRef] [PubMed]
  23. D. Donlagic and B. Culshaw, "Microbend sensor structure for use in distributed and quasi-distributed sensor systems based on selective launching and filtering of the modes in graded index multimode fiber," J. Lightwave Technol. 17,1856 - 1868 (1999). [CrossRef]
  24. D. Donlagic and B. Culshaw, "Propagation of the fundamental mode in curved graded index multimode fiber and its application in sensor systems", J. Lightwave Technol. 18, 334-342 (2000). [CrossRef]
  25. P. Pepeljugoski, M. J. Hackert, J. S. Abbott, S. E. Swanson, S. E. Golowich, A. J. Ritger, P. Kolesar, Y. C. Chen, and P. Pleunis "Development of system specification for laser-optimized 50-um multimode fiber for multigigabit short-wavelength LANs," J. Lightwave Technol. 21, 1256-1275 (2003). [CrossRef]
  26. P. Pepeljugoski, S. E. Golowich, A. J. Ritger, P. Kolesar, and A. Risteski, "Modeling and simulation of next-generation multimode fiber links," J. Lightwave Technol. 21, 1242-1255 (2003). [CrossRef]
  27. D. Donlagic, "Opportunities to enhance multimode fiber links by application of overfilled launch," J. Lightwave Technol. 23, 2526-2540 (2005).
  28. "Encircled Flux Testing," Advanced Optical Components (Finisra), Internal Technical Report, 8/29/2000.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited