OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 17, Iss. 24 — Nov. 23, 2009
  • pp: 22138–22153

A geometrical optics polarimetric bidirectional reflectance distribution function for dielectric and metallic surfaces

M. W. Hyde IV, J. D. Schmidt, and M. J. Havrilla  »View Author Affiliations

Optics Express, Vol. 17, Issue 24, pp. 22138-22153 (2009)

View Full Text Article

Enhanced HTML    Acrobat PDF (559 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A polarimetric bidirectional reflectance distribution function (pBRDF), based on geometrical optics, is presented. The pBRDF incorporates a visibility (shadowing/masking) function and a Lambertian (diffuse) component which distinguishes it from other geometrical optics pBRDFs in literature. It is shown that these additions keep the pBRDF bounded (and thus a more realistic physical model) as the angle of incidence or observation approaches grazing and better able to model the behavior of light scattered from rough, reflective surfaces. In this paper, the theoretical development of the pBRDF is shown and discussed. Simulation results of a rough, perfect reflecting surface obtained using an exact, electromagnetic solution and experimental Mueller matrix results of two, rough metallic samples are presented to validate the pBRDF.

© 2009 Optical Society of America

OCIS Codes
(160.3900) Materials : Metals
(290.5880) Scattering : Scattering, rough surfaces
(290.1483) Scattering : BSDF, BRDF, and BTDF
(290.5855) Scattering : Scattering, polarization

ToC Category:

Original Manuscript: October 6, 2009
Manuscript Accepted: November 5, 2009
Published: November 18, 2009

M. W. Hyde, J. D. Schmidt, and M. J. Havrilla, "A geometrical optics polarimetric bidirectional reflectance distribution function for dielectric and metallic surfaces," Opt. Express 17, 22138-22153 (2009)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. D. E. Barrick, "Theory of HF and VHF propagation across the rough sea—parts I and II," Radio Sci. 6, 517-533 (1971). [CrossRef]
  2. C. Eckart, "The scattering of sound from the sea surface," J. Acoust. Soc. Am. 25, 566-570 (1953). [CrossRef]
  3. E. Y. Harper and F. M. Labianca, "Scattering of sound from a point source by a rough surface progressing over an isovelocity ocean," J. Acoust. Soc. Am. 58(2), 349-364 (1975). [CrossRef]
  4. K. Krishen, "Correlation of radar backscattering cross sections with ocean wave height and wind velocity," J. Geophys. Res. 76, 6528-6539 (1971). [CrossRef]
  5. B. W. Hapke, "A theoretical photometric function for the lunar surface," J. Geophys. Res. 68(15), 4571-4586 (1963).
  6. D. S. Kimes, "Modeling the directional reflectance from complete homogeneous vegetation canopies with various leaf-orientation distributions," J. Opt. Soc. Am. A 1(7), 725-737 (1984). [CrossRef]
  7. R. Hegedüs, A. Barta, B. Bernáth, V. B. Meyer-Rochow, and G. Horváth, "Imaging polarimetry of forest canopies: how the azimuth direction of the sun, occluded by vegetation, can be assessed from the polarization pattern of the sunlit foliage," Appl. Opt. 46(23), 6019-6032 (2007). [CrossRef]
  8. G. Zonios, I. Bassukas, and A. Dimou, "Comparative evaluation of two simple diffuse reflectance models for biological tissue applications," Appl. Opt. 47(27), 4965-4973 (2008). [CrossRef]
  9. J. Xia and G. Yao, "Angular distribution of diffuse reflectance in biological tissue," Appl. Opt. 46(26), 6552-6560 (2007). [CrossRef]
  10. J. F. Blinn, "Models of light reflection for computer synthesized pictures," in SIGGRAPH 1977 Proceedings, vol. 11, pp. 192-198, Special Interest Group on Graphics and Interactive Techniques (Computer Graphics, 1977).
  11. R. L. Cook and K. E. Torrance, "A reflectance model for computer graphics," in SIGGRAPH 1981 Proceedings, vol. 15, pp. 307-316, Special Interest Group on Graphics and Interactive Techniques (Computer Graphics, 1981).
  12. X. D. He, K. E. Torrance, F. X. Sillion, and D. P. Greenberg, "A comprehensive physical model for light reflection," in SIGGRAPH 1991 Proceedings, vol. 25, pp. 175-186, Special Interest Group on Graphics and Interactive Techniques (Computer Graphics, 1991).
  13. M. A. Greiner, B. D. Duncan, and M. P. Dierking, "Bidirectional scattering distribution functions of maple and cottonwood leaves," Appl. Opt. 46(25), 6485-6494 (2007). [CrossRef]
  14. P. Y. Ufimtsev, Fundamentals of the Physical Theory of Diffraction (John Wiley & Sons, Inc., Hoboken, NJ, 2007). [CrossRef]
  15. M. Born and E. Wolf, Principles of Optics, 7th ed. (Cambridge University Press, New York, NY, 1999).
  16. P. Beckmann and A. Spizzichino, The Scattering of Electromagnetic Waves from Rough Surfaces (Artech House, Inc., Norwood, MA, 1963).
  17. A. Ishimaru, Wave Propagation and Scattering in Random Media (IEEE Press, New York, NY, 1997).
  18. C.-H. An and K. J. Zeringue, "Polarization scattering from rough surfaces based on the vector Kirchoff diffraction model," in Proc. SPIE, vol. 5158, pp. 205-216 (The International Society for Optical Engineering (SPIE), 2003).
  19. D. A. McNamara, C. W. I. Pistorius, and J. A. G. Malherbe, Introduction to the Uniform Geometrical Theory of Diffraction (Artech House, Inc., Norwood, MA, 1990).
  20. K. E. Torrance and E. M. Sparrow, "Theory for off-specular reflection from roughened surfaces," J. Opt. Soc. Am. 57(9), 1105-1114 (1967). [CrossRef]
  21. B. P. Sandford and D. C. Robertson, "Infrared reflectance properties of aircraft paints," in Proceedings of IRIS Targets, Backgrounds and Discrimination (1985).
  22. M. P. Fetrow, D. Wellems, S. H. Sposato, K. P. Bishop, T. R. Caudill, M. L. Davis, and E. R. Simrell, "Results of a new polarization simulation," in Proc. SPIE, vol. 4481, pp. 149-162 (The International Society for Optical Engineering (SPIE), 2002).
  23. R. G. Priest and T. A. Germer, "Polarimetric BRDF in the microfacet model: theory and measurements," in Proceedings of the 2000 Meeting of the Military Sensing Symposia Specialty Group on Passive Sensors, pp. 169-181 (Infrared Information Analysis Center, 2000).
  24. R. G. Priest and S. R. Meier, "Polarimetric microfacet scattering theory with applications to absorptive and reflective surfaces," Opt. Eng. 41(5), 988-993 (2002). [CrossRef]
  25. D. Wellems, S. Ortega, D. Bowers, J. Boger, and M. Fetrow, "Long wave infrared polarimetric model: theory, measurements and parameters," J. Opt. A: Pure Appl. Opt. 8(10), 914-925 (2006). [CrossRef]
  26. D. Wellems, M. Serna, S. H. Sposato, M. P. Fetrow, K. P. Bishop, S. A. Arko, and T. R. Caudill, "Spectral polarimetric BRDF model and comparison to measurements from isotropic roughened glass," in Workshop on Multi/Hyperspectral Sensors, Measurements, Modeling and Simulation (U.S. Army Aviation and Missile Command, Huntsville, AL, 2000).
  27. K. K. Ellis, "Polarimetric bidirectional reflectance distribution function of glossy coatings," J. Opt. Soc. Am. A 13(8), 1758-1762 (1996). [CrossRef]
  28. H. G. Tompkins and E. A. Irene, Handbook of Ellipsometry (William Andrew, Inc., Norwich, NY, 2005). [CrossRef]
  29. R. Anderson, "Matrix description of radiometric quantities," Appl. Opt. 30(7), 858-867 (1991). [CrossRef]
  30. D. S. Flynn and C. Alexander, "Polarized surface scattering expressed in terms of a bidirectional reflectance distribution function," Opt. Eng. 34(6), 1646-1650 (1995). [CrossRef]
  31. F. E. Nicodemus, "Radiance," Am. J. Phys. 31, 368-377 (1963). [CrossRef]
  32. F. E. Nicodemus, "Directional reflectance and emissivity of an opaque surface," Appl. Opt. 4(7), 368-377 (1965).
  33. J. R. Schott, Fundamentals of Polarimetric Remote Sensing (SPIE Press, Bellingham, WA, 2009). [CrossRef]
  34. J. R. Shell, "Polarimetric Remote Sensing in the Visible to Near Infrared," Ph.D. dissertation, Chester F. Carslon Center for Imaging Science, Rochester Institute of Technology, Rochester, NY (2005).
  35. Y. Sun, "Statistical ray method for deriving reflection models of rough surfaces," J. Opt. Soc. Am. A 24(3), 724-744 (2007). [CrossRef]
  36. W. S. Bickel and W. M. Bailey, "Stokes vectors, Mueller matrices, and polarized scattered light," Am. J. Phys. 53(5), 468-478 (1985). [CrossRef]
  37. M. G. Gartley, S. D. Brown, and J. R. Schott, "Micro-scale surface and contaminate modeling for polarimetric signature prediction," in Proc. SPIE, vol. 6972 (The International Society for Optical Engineering (SPIE), 2008). [CrossRef]
  38. J. R. Maxwell, J. Beard, S. Weiner, D. Ladd, and S. Ladd, "Bidirectional Reflectance Model Validation and Utilization," Tech. Rep. AFAL-TR-73-303, Air Force Avionics Laboratory, Wright-Patterson Air Force Base, OH (1973).
  39. M. G. Gartley, "Polarimetric Modeling of Remotely Sensed Scenes in the Thermal Infrared," Ph.D. dissertation, Chester F. Carslon Center for Imaging Science, Rochester Institute of Technology, Rochester, NY (2007).
  40. A. F. Peterson, S. L. Ray, and R. Mittra, Computational Methods for Electromagnetics (IEEE Press, New York, NY, 1998).
  41. R. M. Axline and A. K. Fung, "Numerical computation of scattering from a perfectly conducting random surface," IEEE Trans. Antennas Propag. AP-26(3), 482-488 (1978). [CrossRef]
  42. E. I. Thorsos, "The validity of the Kirchhoff approximation for rough surface scattering using a Gaussian roughness spectrum," J. Acoust. Soc. Am. 83(1), 78-92 (1988). [CrossRef]
  43. A. K. Fung and M. F. Chen, "Numerical simulation of scattering from simple and composite random surfaces," J. Opt. Soc. Am. A 2(12), 2274-2284 (1985). [CrossRef]
  44. M. F. Chen and S. Y. Bai, "Computer simulation of wave scattering from a dielectric random surface in two dimensions—cylindrical case," J. Electromagn. Waves Appl. 4(10), 963-982 (1990). [CrossRef]
  45. E. Compain, S. Poirier, and B. Drevillon, "General and self-consistent method for the calibration of polarization modulators, polarimeters, and Mueller-matrix ellipsometers," Appl. Opt. 38(16), 3490-3502 (1999). [CrossRef]
  46. LabSphere, Inc., "A guide to reflectance coatings and materials," http://www.labsphere.com/tecdocs.aspx.
  47. Luxpop, Inc.http://www.luxpop.com/.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited