OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 17, Iss. 24 — Nov. 23, 2009
  • pp: 22171–22178

Strong exciton-photon coupling in inorganic-organic multiple quantum wells embedded low-Q microcavity

K. Pradeesh, J. J. Baumberg, and G. Vijaya Prakash  »View Author Affiliations

Optics Express, Vol. 17, Issue 24, pp. 22171-22178 (2009)

View Full Text Article

Enhanced HTML    Acrobat PDF (907 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Optoelectronic-compatible heterostructures are fabricated from layered inorganic-organic multiple quantum wells (IO-MQW) of Cyclohexenyl ethyl ammonium lead iodide, (C6H9C2H4NH3)2PbI4 (CHPI). These hybrids possess strongly-resonant optical features, are thermally stable and compatible with hybrid photonics assembly. Room-temperature strong-coupling is observed when these hybrids are straightforwardly embedded in metal-air (M-A) and metal-metal (M-M) low-Q microcavities, due to the large oscillator strength of these IO-MQWs. The strength of the Rabi splitting is 130meV for M-A and 160meV for M-M cavities. These values are significantly higher than for J-aggregates in all-metal microcavities of similar length. These experimental results are in good agreement with transfer matrix simulations based on resonant excitons. Incorporating exciton-switching hybrids allows active control of the strong-coupling parameters by temperature, suggesting new device applications.

© 2009 OSA

OCIS Codes
(160.4670) Materials : Optical materials
(250.5230) Optoelectronics : Photoluminescence
(310.3840) Thin films : Materials and process characterization
(140.3948) Lasers and laser optics : Microcavity devices
(250.4745) Optoelectronics : Optical processing devices

ToC Category:

Original Manuscript: August 19, 2009
Revised Manuscript: September 23, 2009
Manuscript Accepted: September 27, 2009
Published: November 19, 2009

K. Pradeesh, J. J. Baumberg, and G. Vijaya Prakash, "Strong exciton-photon coupling in inorganic-organic multiple quantum wells embedded low-Q microcavity," Opt. Express 17, 22171-22178 (2009)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. S. Noda, M. Fujita, and T. Asano, “Spontaneous-emission control by photonic crystals and nanocavities,” Nat. Photonics 1(8), 449–458 (2007). [CrossRef]
  2. A. Ródenas, G. Zhou, D. Jaque, and M. Gu, “Rare-Earth Spontaneous Emission Control in Three-Dimensional Lithium Niobate Photonic Crystals,” Adv. Mater. 21(34), 3526 (2009). [CrossRef]
  3. M. Li, A. Xia, J. Wang, Y. Song, and L. Jiang, “Coherent control of spontaneous emission by photonic crystals,” Chem. Phys. Lett. 444(4-6), 287–291 (2007). [CrossRef]
  4. P. V. Kelkar, V. G. Kozlov, A. V. Nurmikko, C. C. Chu, J. Han, and R. L. Gunshor, “Stimulated emission, gain, and coherent oscillations in II-VI semiconductor microcavities,” Phys. Rev. B 56(12), 7564–7573 (1997). [CrossRef]
  5. V. Bulović, V. B. Khalfin, G. Gu, P. E. Burrows, and S. R. Forrest, “Weak microcavity effects in organic light-emitting devices,” Phys. Rev. B 58(7), 3730–3740 (1998). [CrossRef]
  6. R. B. Fletcher, D. G. Lidzey, D. D. C. Bradley, M. Bernius, and S. Walker, “Spectral properties of resonant-cavity, polyfluorene light-emitting diodes,” Appl. Phys. Lett. 77(9), 1262 (2000). [CrossRef]
  7. C. Weisbuch, M. Nishioka, A. Ashikawa, and Y. Arakawa, “Observation of the coupled exciton-photon mode splitting in a semiconductor quantum microcavity,” Phys. Rev. Lett. 69(23), 3314–3317 (1992). [CrossRef] [PubMed]
  8. D. G. Lidzey, D. D. Bradley, M. S. Skolnick, T. Virgili, S. Walker, and D. M. Whittaker, “Strong exciton-photon coupling in an organic semiconductor microcavity,” Nature 395(6697), 53–55 (1998). [CrossRef]
  9. P. G. Savvidis, J. J. Baumberg, R. M. Stevenson, M. S. Skolnick, D. M. Whittaker, and J. S. Roberts, “Angle-Resonant Stimulated Polariton Amplifier,” Phys. Rev. Lett. 84(7), 1547–1550 (2000). [CrossRef] [PubMed]
  10. M. Vladimirova, S. Cronenberger, D. Scalbert, M. Nawrocki, A. V. Kavokin, A. Miard, A. Lemaître, and J. Bloch, “Polarization controlled nonlinear transmission of light through semiconductor microcavities,” Phys. Rev. B 79(11), 115325 (2009). [CrossRef]
  11. S. Christopoulos, G. B. von Högersthal, A. J. D. Grundy, P. G. Lagoudakis, A. V. Kavokin, J. J. Baumberg, G. Christmann, R. Butté, E. Feltin, J. F. Carlin, and N. Grandjean, “Room-Temperature Polariton Lasing in Semiconductor Microcavities,” Phys. Rev. Lett. 98(12), 126405 (2007). [CrossRef] [PubMed]
  12. J. P. Reithmaier, G. Sek, A. Löffler, C. Hofmann, S. Kuhn, S. Reitzenstein, L. V. Keldysh, V. D. Kulakovskii, T. L. Reinecke, and A. Forchel, “Strong coupling in a single quantum dot-semiconductor microcavity system,” Nature 432(7014), 197–200 (2004). [CrossRef] [PubMed]
  13. P. G. Lagoudakis, M. D. Martin, J. J. Baumberg, A. Qarry, E. Cohen, and L. N. Pfeiffer, “Electron-Polariton Scattering in Semiconductor Microcavities,” Phys. Rev. Lett. 90(20), 206401 (2003). [CrossRef] [PubMed]
  14. D. G. Lidzey, A. M. Fox, M. D. Rahn, M. S. Skolnick, and S. Walker, “Experimental study of light emission from strongly coupled organic semiconductor microcavities following nonresonant laser excitation,” Phys. Rev. B 65(19), 195312 (2002). [CrossRef]
  15. S. Kéna-Cohen, M. Davanço, and S. R. Forrest, “Strong Exciton-Photon Coupling in an Organic Single Crystal Microcavity,” Phys. Rev. Lett. 101(11), 116401 (2008). [CrossRef] [PubMed]
  16. C. E. Finlayson, G. V. Prakash, and J. J. Baumberg, “Strong exciton-photon coupling in a length tunable optical microcavity with J-aggregate dye heterostructures,” Appl. Phys. Lett. 86(4), 041110 (2005). [CrossRef]
  17. M. Era, S. Morimoto, T. Tsutsui, and S. Saito, “Organic–Inorganic Heterostructure Electroluminescent Device Using a Layered Perovskite Semiconductor (C6H5C2H4NH3)2PbI4,” Appl. Phys. Lett. 65(6), 676 (1994). [CrossRef]
  18. C. R. Kagan, D. B. Mitzi, and C. D. Dimitrakopoulos, “Organic-Inorganic Hybrid Materials as Semiconducting Channels in Thin-Film Field-Effect Transistors,” Science 286(5441), 945–947 (1999). [CrossRef] [PubMed]
  19. T. Dantas de Morais, F. Chaput, K. Lahlil, and J. P. Boilot, “Hybrid Organic–Inorganic Light-Emitting Diodes,” Adv. Mater. 11(2), 107–112 (1999). [CrossRef]
  20. G. V. Prakash, K. Pradeesh, R. Ratnani, K. Saraswat, M. E. Light, and J. J. Baumberg, J. Phys: D App. Phys. 42, 185405 (2009). [CrossRef]
  21. S. Zhang, G. Lanty, J.-S. Lauret, E. Deleporte, P. Audebert, and L. Galmiche, “Synthesis and optical properties of novel organic–inorganic hybrid nanolayer structure semiconductors,” Acta Mater. 57(11), 3301–3309 (2009). [CrossRef]
  22. K. Pradeesh, J. J. Baumberg, and G. V. Prakash, “In situ intercalation strategies for device-quality hybrid inorganic-organic self-assembled quantum wells,” Appl. Phys. Lett. 95(3), 033309–033311 (2009). [CrossRef]
  23. T. Ishihara, J. Takahashi, and T. Goto, “Optical properties due to electronic transitions in two-dimensional semiconductors (C_nH_2n+1NH_3)_2PbI_4,” Phys. Rev. B 42(17), 11099–11107 (1990). [CrossRef]
  24. P. A. Hobson, W. L. Barnes, D. G. Lidzey, G. A. Gehring, D. M. Whittaker, M. S. Skolnick, and S. Walker, “Strong exciton–photon coupling in a low-Q all-metal mirror microcavity,” Appl. Phys. Lett. 81(19), 3519 (2002). [CrossRef]
  25. G. Lanty, A. Bréhier, R. Parashkov, J. S. Lauret, and E. Deleporte, “Strong exciton–photon coupling at room temperature in microcavities containing two-dimensional layered perovskite compounds,” N. J. Phys. 10(6), 065007 (2008). [CrossRef]
  26. K. Sumioka, H. Nagahama, and T. Tsutsui, “Strong coupling of exciton and photon modes in photonic crystal infiltrated with organic–inorganic layered perovskite,” Appl. Phys. Lett. 78(10), 1328–1330 (2001). [CrossRef]
  27. D. G. Billing and A. Lemmerer, “Synthesis, characterization and phase transitions of the inorganic–organic layered perovskite-type hybrids [(CnH2n+1NH3)2PbI4] (n = 12, 14, 16 and 18),” N. J. Chem. 32(10), 1736–1746 (2008). [CrossRef]
  28. K. Pradeesh, J. J. Baumberg, and G. V. Prakash, “Exciton Switching and Peierls Transitions in Hybrid Inorganic-Organic Self-Assembled Quantum Wells,” Communicated (2009).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited