OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 17, Iss. 24 — Nov. 23, 2009
  • pp: 22179–22189

Geometry dependence of field enhancement in 2D metallic photonic crystals

Hari P. Paudel, Khadijeh Bayat, Mahdi Farrokh Baroughi, Stanley May, and David W. Galipeau  »View Author Affiliations

Optics Express, Vol. 17, Issue 24, pp. 22179-22189 (2009)

View Full Text Article

Enhanced HTML    Acrobat PDF (798 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Geometry dependence of surface plasmon resonance of 2D metallic photonic crystals (PCs) was assessed using rigorous 3D finite difference time domain analysis. PCs of noble metallic rectangular and cylindrical nanopillars in square and triangular lattices on thick noble metal film were simulated for maximum field enhancement. It was found that the period, size and thickness of the nanopillars can be tuned to excite of surface plasmons at desired wavelengths in visible and near-infrared ranges. Maximum electric field enhancement near the nanopillars was found to be greater than 10X. The detail analysis of PCs tuned for 750 nm wavelength showed that thickness of nanopillars was the most sensitive parameter for field enhancement, and triangular lattice PCs had the wider enhancement bandwidth than square lattice PCs. Results showed that these PCs are sensitive with incident angle (θ) but not with polarization angle (ϕ).

© 2009 OSA

OCIS Codes
(050.0050) Diffraction and gratings : Diffraction and gratings
(350.4238) Other areas of optics : Nanophotonics and photonic crystals

ToC Category:
Photonic Crystals

Original Manuscript: September 8, 2009
Revised Manuscript: October 12, 2009
Manuscript Accepted: October 13, 2009
Published: November 19, 2009

Hari P. Paudel, Khadijeh Bayat, Mahdi Farrokh Baroughi, Stanley May, and David W. Galipeau, "Geometry dependence of field enhancement in 2D metallic photonic crystals," Opt. Express 17, 22179-22189 (2009)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. H. Raether, Surface Plasmon on smooth and rough surface and on grating (Spinger-Verlag, Berlin Heidelberg, 1988).
  2. S. A. Maier, Plasmonics: Fundamentals and application, (Springer, New York, 2007).
  3. W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003). [CrossRef] [PubMed]
  4. D. M. Schaadt, B. Feng, and E. T. Yu, “Enhanced semiconductor optical absorption via surface Plasmon excitation in metal nanoparticles,” Appl. Phys. Lett. 86(6), 063106 (2005). [CrossRef]
  5. S. Phillai, K. R. Catchpole, T. Trupke, and M. A. Green, “Surface Plasmon enhanced silicon solar cells,” J. Appl. Phys. 101, 093104 (2007).
  6. C. Langhammer, M. Schwind, B. Kasemo, and I. Zorić, “Localized surface plasmon resonances in aluminum nanodisks,” Nano Lett. 8(5), 1461–1471 (2008). [CrossRef] [PubMed]
  7. C. H. Liu, M. H. Hong, H. W. Cheung, F. Zhang, Z. Q. Huang, L. S. Tan, and T. S. A. Hor, “Bimetallic structure fabricated by laser interference lithography for tuning surface plasmon resonance,” Opt. Express 16(14), 10701–10709 (2008). [CrossRef] [PubMed]
  8. C. Hägglund, M. Zäch, G. Petersson, and B. Kasemo, “Electromagnetic coupling of light into a silicon solar cell by nanodisk plasmon,” Appl. Phys. Lett. 92, 153110 (2008). [CrossRef]
  9. K. Tawa, H. Hori, K. Kintaka, K. Kiyosue, Y. Tatsu, and J. Nishii, “Optical microscopic observation of fluorescence enhanced by grating-coupled surface plasmon resonance,” Opt. Express 16(13), 9781–9790 (2008). [CrossRef] [PubMed]
  10. M. Kretschmann, “Phase diagrams of surface plasmon polaritons crystals,” Phys. Rev. B 68(12), 125419 (2003). [CrossRef]
  11. S. C. Kitson, W. L. Barnes, and J. R. Sambles, “Full Photonic Band Gap for Surface Modes in the Visible,” Phys. Rev. Lett. 77(13), 2670–2673 (1996). [CrossRef] [PubMed]
  12. S. I. Bozhevolnyi, J. Erland, K. Leosson, P. M. W. Skovgaard, and J. M. Hvam, “Waveguiding in surface plasmon polariton band gap structures,” Phys. Rev. Lett. 86(14), 3008–3011 (2001). [CrossRef] [PubMed]
  13. T. Søndergaard and S. I. Bozhevolnyi, “Theoretical analysis of finite-size surface plasmon polaritons band-gap structures,” Phys. Rev. B 71(12), 125429 (2005). [CrossRef]
  14. A. Boltasseva, T. Søndergaard, T. Nikolajsen, K. Leosson, S. I. Bozhevolnyi, and J. M. Hvam, “Propagation of long-range surface plasmon polaritons in photonic crystals,” J. Opt. Soc. Am. B 22(9), 2027 (2005). [CrossRef]
  15. J. D. Jackson, Classical Electrodynamics, (Wiley India, 1999).
  16. L. O. M. Rayleigh, “On Dynamical theory of gratings,” Proc. R. Soc. Lond., A Contain. Pap. Math. Phys. Character 79(532), 399–416 (1907). [CrossRef]
  17. D. Maystre, “A new general integral theory for dielectric coated gratings,” J. Opt. Soc. Am. A 68(4), 490–495 (1978). [CrossRef]
  18. D. Maystre, “Rigorous vector theories of diffraction gratings,” in Progress in optics, Vol. xxi, E. Wolf ed. (1984).
  19. P. Sheng, R. S. Stepleman, and P. N. Sanda, “Exact eigenfunction for square-wave gratings: Application to diffraction and surface-plasmon calculations,” Phys. Rev. B 26(6), 2907–2916 (1982). [CrossRef]
  20. K. Yusuura and H. Ikuno, “Improved point matching method with application to scattering from periodic surface,” IEEE Trans. Antennas Propag. AP 21(5), 657–662 (1973). [CrossRef]
  21. T. Matsuda, D. Zhou, and Y. Okuno, “Numerical analysis of plasmon-resonance absorption in bisinusoidal metal gratings,” J. Opt. Soc. Am. A 19(4), 695–701 (2002). [CrossRef]
  22. T. K. Gaylord, and M. G. Maharam, “Analysis and Application of Optical Diffraction by Gratings,” in Proceedings of IEEE Conference (1985) 73(5), pp. 894–937.
  23. A. Benabbas, V. Halté, and J.-Y. Bigot, “Analytical model of the optical response of periodically structured metallic films,” Opt. Express 13(22), 8730–8745 (2005). [CrossRef] [PubMed]
  24. M. Paulus and O. J. Martin, “Green’s tensor technique for scattering in two-dimensional stratified media,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 63(6), 066615 (2001). [CrossRef] [PubMed]
  25. T. Søndergaard and S. I. Bozhevolnyi, “Surface plasmon polariton scattering by a small particle placed near a metal surface:An analytical study,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 69, 045422 (2004).
  26. B. T. Draine and P. J. Flatau, “Discrete-dipole approximation for scattering calculations,” J. Opt. Soc. Am. A 11(4), 1491–1498 (1994). [CrossRef]
  27. L. Zhao, K. L. Kelly, and G. C. Schatz, “The extinction spectra of silver nanoparticle arrays: Influence of arrays structure on plasmon resonance wavelength and width,” J. Phys. Chem. B 107(30), 7343–7350 (2003). [CrossRef]
  28. R. Lazzari, I. Simonsen, D. Bedeaux, J. Vlieger, and J. Jupille, “Polarizability of truncated spheroidal particles supported by a substrate: model and application,” Eur. Phys. J. B 24(2), 267–284 (2001). [CrossRef]
  29. Y. Teng and E. A. Stern, “Plasma radiation from metal grating surfaces,” Phys. Rev. Lett. 19(9), 511–514 (1967). [CrossRef]
  30. P. T. Worthing and W. L. Barnes, “Efficient coupling of surface plasmons polaritons to radiation using a bi-grating,” Appl. Phys. Lett. 79(19), 3035–3037 (2001). [CrossRef]
  31. http://www.emexplorer.net
  32. D. W. Lynch and W. R. Hunter, “Comments on the Optical Constants of Metals and an Introduction to the Data for Several metals” Handbook of Optical constant of Solid, E. D. Palik ed., (Academic press, New York 1985).
  33. A. Taflove and S. C. Hagness, Computational Electrodynamics: Finite-Difference Time-Domain Method, (Artech House, 1995).
  34. R. Fuchs, “Theory of the optical properties of ionic crystal cubes,” Phys. Rev. B 11(4), 1732–1740 (1975). [CrossRef]
  35. R. Ruppin, “Plasmon frequencies of cube shaped metal clusters,” Z. Phys. D 36(1), 69–71 (1996). [CrossRef]
  36. W. H. Weber and G. W. Ford, “Optical electric-field enhancement at a metal surface arising from surface-plasmon excitation,” Opt. Lett. 6(3), 122–124 (1981). [CrossRef] [PubMed]
  37. C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles, (John Wiley & Sons, New York, 1983).
  38. J. D. Joannopoulos, S. G. Johnson, J. N. Winn, and R. D. Meade, Photonic Crystals, (Princeton University Press 2008).
  39. MEEP, FDTD package, http://ab-initio.mit.edu/wiki/index.php/Meep

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited