OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 17, Iss. 24 — Nov. 23, 2009
  • pp: 22209–22216

Pyroliton: pyroelectric spatial soliton

Jassem Safioui, Fabrice Devaux, and Mathieu Chauvet  »View Author Affiliations

Optics Express, Vol. 17, Issue 24, pp. 22209-22216 (2009)

View Full Text Article

Enhanced HTML    Acrobat PDF (231 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The concept of optical beam self-trapping in pyroelectric photorefractive medium is presented. We show that the temperature controlled spontaneous polarisation of ferroelectric crystals produces an optical nonlinearity that can lead to formation of 2-D spatial soliton named pyroliton. Experimental demonstrations performed in lithium niobate crystals illustrate that efficient self-trapping occurs either for ordinary or extraordinary polarisation under moderate temperature increase. For instance, a 15µm diameter pyroliton can be formed with a 10 degree temperature raise.

© 2009 OSA

OCIS Codes
(190.5330) Nonlinear optics : Photorefractive optics
(190.6135) Nonlinear optics : Spatial solitons

ToC Category:
Nonlinear Optics

Original Manuscript: September 17, 2009
Revised Manuscript: October 15, 2009
Manuscript Accepted: October 26, 2009
Published: November 19, 2009

Jassem Safioui, Fabrice Devaux, and Mathieu Chauvet, "Pyroliton: pyroelectric spatial soliton," Opt. Express 17, 22209-22216 (2009)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. R. Y. Chiao, E. Garmire, and C. H. Townes, “Self-Trapping of Optical Beams,” Phys. Rev. Lett. 13(15), 479–482 (1964). [CrossRef]
  2. A. Barthélémy, S. Maneuf, and C. Froehly, “Propagation soliton et auto-confinement de faisceaux laser par non linearité optique de Kerr,” Opt. Commun. 55(3), 201–206 (1985). [CrossRef]
  3. K. Hayata and M. Koshiba, “Multidimensional solitons in quadratic nonlinear media,” Phys. Rev. Lett. 71(20), 3275–3278 (1993). [CrossRef] [PubMed]
  4. M. Peccianti, A. De Rossi, G. Assanto, A. De Luca, C. Umeton, and I. C. Khoo, “Electrically assisted self-confinement and waveguiding in planar nematic liquid crystal cells,” Appl. Phys. Lett. 77(1), 7–9 (2000). [CrossRef]
  5. G. C. Duree, J. L. Shultz, G. J. Salamo, M. Segev, A. Yariv, B. Crosignani, E. J. Sharp, R. R. Neurgaonkar, and P. Di Porto, “Observation of self-trapping of an optical beam due to the photorefractive effect,” Phys. Rev. Lett. 71(4), 533–536 (1993). [CrossRef] [PubMed]
  6. A. D. Boardman, and A. P. Sukhorukov, Soliton Driven Photonics (Kluwer Acad. Publ., Dordrecht, 2001).
  7. S. Trillo, and W. E. Torruellas, Spatial Solitons (Springer-Verlag, Berlin, 2001).
  8. M. Segev, G. C. Valley, B. Crosignani, P. Di porto, and A. Yariv, “Steady-State Spatial Screening Solitons in Photorefractive Materials with External Applied Field,” Phys. Rev. Lett. 73(24), 3211–3214 (1994). [CrossRef] [PubMed]
  9. M. Morin, G. C. Duree, G. J. Salamo, and M. Segev, “Waveguides formed by quasi-steady-state photorefractive spatial solitons,” Opt. Lett. 20(20), 2066–2068 (1995). [CrossRef] [PubMed]
  10. D. Neshev, E. Ostrovskaya, Y. Kivshar, and W. Krolikowski, “Spatial solitons in optically induced gratings,” Opt. Lett. 28(9), 710–712 (2003). [CrossRef] [PubMed]
  11. W. KrólikowskiM. Saffman, B. Luther-Davies, and C. Denz, “Anomalous Interaction of Spatial Solitons in Photorefractive Media,” Phys. Rev. Lett. 80(15), 3240–3243 (1998). [CrossRef]
  12. E. Fazio, F. Renzi, R. Rinaldi, M. Bertolotti, M. Chauvet, W. Ramadan, A. Petris, and V. I. Vlad, “Screening-photovoltaic bright solitons in lithium niobate and associated single mode waveguides,” Appl. Phys. Lett. 85(12), 2193–2195 (2004). [CrossRef]
  13. M. Taya, M. C. Bashaw, M. M. Fejer, M. Segev, and G. C. Valley, “Observation of dark photovoltaic spatial solitons,” Phys. Rev. A 52(4), 3095–3100 (1995). [CrossRef] [PubMed]
  14. W. L. She, K. K. Lee, and W. K. Lee, “Observation of Two-Dimensional Bright Photovoltaic Spatial Solitons,” Phys. Rev. Lett. 83(16), 3182–3185 (1999). [CrossRef]
  15. C. Anastassiou, M. F. Shih, M. Mitchell, Z. Chen, and M. Segev, “Optically induced photovoltaic self-defocusing-to-self-focusing transition,” Opt. Lett. 23(12), 924–926 (1998). [CrossRef] [PubMed]
  16. J. D. Brownridge, “Pyroelectric x-ray generator,” Nature 358(6384), 277–278 (1992). [CrossRef] [PubMed]
  17. J. Geuther, Y. Danon, and F. Saglime, “Nuclear Reactions Induced by a Pyroelectric Accelerator,” Phys. Rev. Lett. 96(5), 054803–054806 (2006). [CrossRef] [PubMed]
  18. S. M. Kostritskii, O. G. Sevostyanov, M. Aillerie, and P. Bourson, “Suppression of photorefractive damage with aid of steady-state temperature gradient in nominally pure LiNbO3 crystals,” J. Appl. Phys. 104(11), 114104–114114 (2008). [CrossRef]
  19. P. Günter, and J. P. Huignard, Photorefractive materials and their applications 2 (Springer, Berlin, 2007).
  20. F. Devaux, V. Coda, M. Chauvet, and R. Passier, “New time-dependent photorefractive three-dimensional model: application to self-trapped beam with large bending,” J. Opt. Soc. Am. B 25(6), 1081–1086 (2008). [CrossRef]
  21. T. Bartholomaüs, K. Buse, C. Deuper, and E. Krätzig, “Pyroelectric Coefficients of LiNbO3 Crystals of Different Compositions,” Phys. Status Solidi 142(1), K55–K57 (1994) (a). [CrossRef]
  22. A. Savage, “Visual system-response functions and estimating reflectance,” J. Appl. Phys. 37, 3071 (1966). [CrossRef]
  23. M. Simon, S. Wevering, K. Buse, and E. Krätzig, “The bulk photovoltaic effect of photorefractive LiNbO3:Fe crystals at high light intensities,” J. Phys. D 30(1), 144–149 (1997). [CrossRef]
  24. J. Safioui, M. Chauvet, F. Devaux, V. Coda, F. Pettazzi, M. Alonzo, and E. Fazio, “Polarization and configuration dependence of beam self-focusing in photorefractive liNbO3,” J. Opt. Soc. Am. B 26(3), 487–492 (2009). [CrossRef]
  25. A. A. Zozulya and D. Z. Anderson, “Propagation of an optical beam in a photorefractive medium in the presence of a photogalvanic nonlinearity or an externally applied electric field,” Phys. Rev. A 51(2), 1520–1531 (1995). [CrossRef] [PubMed]
  26. G. Montemezzani, C. Medrano, and P. Günter, “Charge carrier photoexcitation and two-wave mixing in dichroic materials,” Phys. Rev. Lett. 79(18), 3403–3406 (1997). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited