OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 17, Iss. 24 — Nov. 23, 2009
  • pp: 22217–22222

Tunable delay slow-light in an active fiber Bragg grating

Kai Qian, Li Zhan, Honggen Li, Xiao Hu, Junsong Peng, Liang Zhang, and Yuxing Xia  »View Author Affiliations

Optics Express, Vol. 17, Issue 24, pp. 22217-22222 (2009)

View Full Text Article

Enhanced HTML    Acrobat PDF (797 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We proposed and experimentally demonstrated an extremely simple and feasible slow-light technique to achieve tunable optical delay by using the Er/Yb codoped fiber Bragg grating (FBG). The signal light experiences strong dispersion when it is launched into the reflection edge of FBG, and the group delay value is determined by the signal wavelength and the pump power. In the experiment, a controllable delay of 0.9 ns can be obtained through changing the 980nm pump power. The group velocity can be slowed down to 5.6 × 10 7 m/s, which is 19% of the speed of light in free space. It provides a very simple approach to control the light group delay, which is likely to have important implications for practical applications.

© 2009 OSA

OCIS Codes
(060.2310) Fiber optics and optical communications : Fiber optics
(260.2030) Physical optics : Dispersion
(060.3735) Fiber optics and optical communications : Fiber Bragg gratings

ToC Category:
Slow and Fast Light

Original Manuscript: September 21, 2009
Revised Manuscript: October 30, 2009
Manuscript Accepted: November 3, 2009
Published: November 19, 2009

Kai Qian, Li Zhan, Honggen Li, Xiao Hu, Junsong Peng, Liang Zhang, and Yuxing Xia, "Tunable delay slow-light in an active fiber Bragg grating," Opt. Express 17, 22217-22222 (2009)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. L. V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, “Light speed reduction to 17 metres per second in an ultracold atomic gas,” Nature 397(6720), 594–598 (1999). [CrossRef]
  2. M. S. Bigelow, N. N. Lepeshkin, and R. W. Boyd, “Observation of ultraslow light propagation in a ruby crystal at room temperature,” Phys. Rev. Lett. 90(11), 113903 (2003). [CrossRef] [PubMed]
  3. M. S. Bigelow, N. N. Lepeshkin, and R. W. Boyd, “Superluminal and slow light propagation in a room-temperature solid,” Science 301(5630), 200–202 (2003). [CrossRef] [PubMed]
  4. P. C. Ku, F. Sedgwick, C. J. Chang-Hasnain, P. Palinginis, T. Li, H. Wang, S. W. Chang, and S.-L. Chuang, “Slow light in semiconductor quantum wells,” Opt. Lett. 29(19), 2291–2293 (2004). [CrossRef] [PubMed]
  5. A. Schweinsberg, N. N. Lepeshkin, M. S. Bigelow, R. W. Boyd, and S. Jarabo, “Observation of superluminal and slow light propagation in erbium-doped optical fiber,” Europhys. Lett. 73(2), 218–224 (2006). [CrossRef]
  6. A. Yariv, Y. Xu, R. K. Lee, and A. Scherer, “Coupled-resonator optical waveguide: a proposal and analysis,” Opt. Lett. 24(11), 711–713 (1999). [CrossRef] [PubMed]
  7. J. Sharping, Y. Okawachi, and A. Gaeta, “Wide bandwidth slow light using a Raman fiber amplifier,” Opt. Express 13(16), 6092–6098 (2005). [CrossRef] [PubMed]
  8. D. Dahan and G. Eisenstein, “Tunable all optical delay via slow and fast light propagation in a Raman assisted fiber optical parametric amplifier: a route to all optical buffering,” Opt. Express 13(16), 6234–6249 (2005). [CrossRef] [PubMed]
  9. J. Sharping, Y. Okawachi, J. van Howe, C. Xu, Y. Wang, A. Willner, and A. Gaeta, “All-optical, wavelength and bandwidth preserving, pulse delay based on parametric wavelength conversion and dispersion,” Opt. Express 13(20), 7872–7877 (2005). [CrossRef] [PubMed]
  10. M. P. Fok and C. Shu, “Tunable optical delay using four-wave mixing in a 35-cm highly nonlinear Bismuth-Oxide fiber and group velocity dispersion,” J. Lightwave Technol. 26(5), 499–504 (2008). [CrossRef]
  11. K. Y. Song, M. G. Herráez, and L. Thévenaz, “Observation of pulse delaying and advancement in optical fibers using stimulated Brillouin scattering,” Opt. Express 13(1), 82–88 (2005). [CrossRef] [PubMed]
  12. Y. Okawachi, M. S. Bigelow, J. E. Sharping, Z. Zhu, A. Schweinsberg, D. J. Gauthier, R. W. Boyd, and A. L. Gaeta, “Tunable all-optical delays via Brillouin slow light in an optical fiber,” Phys. Rev. Lett. 94(15), 153902 (2005). [CrossRef] [PubMed]
  13. L. Thevenaz, “Slow and fast light in optical fibres,” Nat. Photonics 2(8), 474–481 (2008). [CrossRef]
  14. L. Xing, L. Zhan, S. Luo, and Y. Xia, “High-power low-noise fiber Brillouin amplifier for tunable slow-light delay buffer,” IEEE J. Quantum Electron. 44(12), 1133–1138 (2008). [CrossRef]
  15. Z. Zhu, A. M. C. Dawes, D. J. Gauthier, L. Zhang, and A. E. Willner, “12-GHz-bandwidth SBS slow light in optical fibers,” presented at the Optical Fiber Commun. Conf., Anaheim, CA, 2006, Paper PDP1.
  16. K. Y. Song and K. Hotate, “25 GHz bandwidth Brillouin slow light in optical fibers,” Opt. Lett. 32(3), 217–219 (2007). [CrossRef] [PubMed]
  17. L. Yi, L. Zhan, W. Hu, and Y. Xia, “Delay of broadband signals using slow light in stimulated Brillouin scattering with phase-modulated pump,” IEEE Photon. Technol. Lett. 19(8), 619–621 (2007). [CrossRef]
  18. C. R. Giles, “Lightwave applications of fiber Bragg gratings,” J. Lightwave Technol. 15(8), 1391–1404 (1997). [CrossRef]
  19. D. Janner, G. Galzerano, G. D. Valle, P. Laporta, S. Longhi, and M. Belmonte, “Slow light in periodic superstructure Bragg gratings,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 72(5), 056605 (2005). [CrossRef] [PubMed]
  20. J. T. Mok, C. M. De Sterke, I. C. M. Littler, and B. J. Eggleton, “Dispersionless slow light using gap solitons,” Nat. Phys. 2(11), 775–780 (2006). [CrossRef]
  21. T. Erdogan, “Fiber grating spectra,” J. Lightwave Technol. 15(8), 1277–1294 (1997). [CrossRef]
  22. D. J. Gauthier, “Slow light brings faster communications,” Phys. World 18, 30–32 (2005).
  23. R. W. Boyd, D. J. Gauthier, and A. L. Gaeta, “Applications of slow light in telecommunications,” Opt. Photonics News 17(4), 18–23 (2006). [CrossRef]
  24. G. A. Ball, W. H. Glenn, and W. W. Morey, “Programmable fiber optic delay line,” IEEE Photon. Technol. Lett. 6(6), 741–743 (1994). [CrossRef]
  25. H. Kogelnik and C. V. Shank, “Coupled-wave theory of distributed feedback lasers,” J. Appl. Phys. 43(5), 2327–2335 (1972). [CrossRef]
  26. C. Thirstrup, Y. Shi, and B. Palsdottir, “Pump-induced refractive index modulation and dispersions in Er3+-doped fiber,” J. Lightwave Technol. 14(5), 732–738 (1996). [CrossRef]
  27. G. Lenz, B. J. Eggleton, C. K. Madsen, and R. E. Slusher, “Optical delay lines based on optical filters,” IEEE J. Quantum Electron. 37(4), 525–532 (2001). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited