OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 17, Iss. 24 — Nov. 23, 2009
  • pp: 22223–22234

Optical and electrical properties of Au nanoparticles in two-dimensional networks: an effective cluster model

Huimin Su, Yingshun Li, Xiao-Yuan Li, and Kam Sing Wong  »View Author Affiliations


Optics Express, Vol. 17, Issue 24, pp. 22223-22234 (2009)
http://dx.doi.org/10.1364/OE.17.022223


View Full Text Article

Enhanced HTML    Acrobat PDF (277 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We report a study of the optical and electric properties of Au nanoparticle networks grown on the porous alumina membrane by dry atom sputtering deposition approach. An effective cluster model was developed to evaluate the dielectric function and the electrical conductivities of the nanoparticle networks by taking into account the effects of the Au particle size, the Au volume fraction, and the particle-particle interaction. The calculated transmission spectra from the model were in good agreement with the experimental data. The percolation threshold of the as-fabricated structure was predicted to occur at Au volume fraction of 0.18, consistent with the dc electric resistance measurement.

© 2009 OSA

OCIS Codes
(240.6680) Optics at surfaces : Surface plasmons
(260.3910) Physical optics : Metal optics
(260.2065) Physical optics : Effective medium theory

ToC Category:
Physical Optics

History
Original Manuscript: September 22, 2009
Revised Manuscript: November 11, 2009
Manuscript Accepted: November 11, 2009
Published: November 19, 2009

Citation
Huimin Su, Yingshun Li, Xiao-Yuan Li, and Kam Sing Wong, "Optical and electrical properties of Au nanoparticles in two-dimensional networks:
an effective cluster model," Opt. Express 17, 22223-22234 (2009)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-17-24-22223


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. M. Lai and D. J. Riley, “Templated electrosynthesis of nanomaterials and porous structures,” J. Colloid Interface Sci. 323(2), 203–212 (2008). [CrossRef] [PubMed]
  2. J. J. Mock, D. R. Smith, and S. Schultz, “Local refractive index dependence of plasmon resonance spectra from individual nanoparticles,” Nano Lett. 3(4), 485–491 (2003). [CrossRef]
  3. J. Henzie, J. Lee, M. H. Lee, W. Hasan, and T. W. Odom, “Nanofabrication of Plasmonic Structures,” Annu. Rev. Phys. Chem. 60(1), 147–165 (2009). [CrossRef] [PubMed]
  4. I. Willner, R. Baron, and B. Willner, “Growing metal nanoparticles by enzymes,” Adv. Mater. 18(9), 1109–1120 (2006). [CrossRef]
  5. K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, “The optical properties of metal nanoparticles: The influence of size, shape, and dielectric environment,” J. Phys. Chem. B 107(3), 668–677 (2003). [CrossRef]
  6. J. J. Mock, M. Barbic, D. R. Smith, D. A. Schultz, and S. Schultz, “Shape effects in plasmon resonance of individual colloidal silver nanoparticles,” J. Chem. Phys. 116(15), 6755–6759 (2002). [CrossRef]
  7. U. Kreibig and M. Vollmer, Optical Properties of Metal Clusters, Springer Series in Materials Science (Springer, 1995).
  8. J. C. M. Garnett, “Colours in Metal Glasses and in Metallic Films,” Philos. Trans. R. Soc. Lond. A 203(1), 385–420 (1904). [CrossRef]
  9. D. A. G. Bruggeman, “Calculation of various physics constants in heterogenous substances I Dielectricity constants and conductivity of mixed bodies from isotropic substances,” Ann. Phys. Berlin 24, 636–664 (1935). [CrossRef]
  10. P. Sheng, “Pair-cluster theory for the dielectric constant of composite media,” Phys. Rev. B 22(12), 6364–6368 (1980). [CrossRef]
  11. Y. S. Li, “Two-dimensional noble metal nanostructures: facile fabrication, optical and electrochemical characterization, and sensing applications,” Ph.D Thesis, The Hong Kong University of Science and Technology, May 2009.
  12. U. Kreibig and C. V. Fragstein, “Limitation of Electron Mean Free Path in Small Silver Particles,” Z. Phys. 224(4), 307–323 (1969). [CrossRef]
  13. U. Kreibig, “Kramers Kronig Analysis of Optical Properties of Small Silver Particles,” Z. Phys. 234(4), 307–318 (1970). [CrossRef]
  14. M. Meier and A. Wokaun, “Enhanced Fields on Large Metal Particles: Dynamic Depolarization,” Opt. Lett. 8(11), 581–583 (1983). [CrossRef] [PubMed]
  15. D. L. Feldheim and C. A. Foss, Metal nanoparticles: synthesis, characterization, and applications (Marcel Dekker, New York, 2002).
  16. J. M. Gérardy and M. Ausloos, “Absorption spectrum of clusters of spheres from the general solution of Maxwell's equations. The long-wavelength limit,” Phys. Rev. B 22(10), 4950–4959 (1980). [CrossRef]
  17. H. Xu, “A new method by extending Mie theory to calculate local field in outside/inside of aggregates of arbitrary spheres,” Phys. Lett. A 312(5-6), 411–419 (2003). [CrossRef]
  18. T. Yamaguch, S. Yoshida, and A. Kinbara, “Anomalous Optical-Absorption of Aggregated Silver Films,” Thin Solid Films 18(1), 63–70 (1973). [CrossRef]
  19. T. Yamaguchi, H. Takahashi, and A. Sudoh, “Optical Behavior of a Metal Island Film,” J. Opt. Soc. Am. 68(8), 1039–1044 (1978). [CrossRef]
  20. J. E. Sansonetti and J. K. Furdyna, “Depolarization Effects in Arrays of Spheres,” Phys. Rev. B 22(6), 2866–2874 (1980). [CrossRef]
  21. C. G. Granqvist and O. Hunderi, “Conductivity of Inhomogeneous Materials - Effective-Medium Theory with Dipole-Dipole Interaction,” Phys. Rev. B 18(4), 1554–1561 (1978). [CrossRef]
  22. C. G. Granqvist and O. Hunderi, “Optical-Properties of Ultrafine Gold Particles,” Phys. Rev. B 16(8), 3513–3534 (1977). [CrossRef]
  23. P. Clippe, R. Evrard, and A. A. Lucas, “Aggregation Effect on Infrared-Absorption Spectrum of Small Ionic-Crystals,” Phys. Rev. B 14(4), 1715–1721 (1976). [CrossRef]
  24. D. Stroud, “The effective medium approximations: Some recent developments,” Superlattices Microstruct. 23(3-4), 567–573 (1998). [CrossRef]
  25. O. S. Heavens, Optical properties of thin solid films (Butterworths Scientific Publ., London, 1955).
  26. P. B. Johnson and R. W. Christy, “Optical-Constants of Noble-Metals,” Phys. Rev. B 6(12), 4370–4379 (1972). [CrossRef]
  27. T. Rindzevicius, Y. Alaverdyan, B. Sepulveda, T. Pakizeh, M. Kall, R. Hillenbrand, J. Aizpurua, and F. J. Garcia de Abajo, “Nanohole Plasmons in Optically Thin Gold Films,” J. Phys. Chem. C 111(3), 1207–1212 (2007). [CrossRef]
  28. X. Y. Lang, L. Y. Chen, P. F. Guan, T. Fujita, and M. W. Chen, “Geometric effect on surface enhanced Raman scattering of nanoporous gold: Improving Raman scattering by tailoring ligament and nanopore ratios,” Appl. Phys. Lett. 94(21), 213109 (2009). [CrossRef]
  29. A. Degiron, H. J. Lezec, N. Yamamoto, and T. W. Ebbesen, “Optical transmission properties of a single subwavelength aperture in a real metal,” Opt. Commun. 239(1-3), 61–66 (2004). [CrossRef]
  30. N. Félidj, J. Aubard, G. Levi, J. R. Krenn, G. Schider, A. Leitner, and F. R. Aussenegg, “Enhanced substrate-induced coupling in two-dimensional gold nanoparticle arrays,” Phys. Rev. B 66(24), 245407 (2002). [CrossRef]
  31. M. Moskovits, “Surface-enhanced spectroscopy,” Rev. Mod. Phys. 57(3), 783–826 (1985). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited