OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 17, Iss. 24 — Nov. 23, 2009
  • pp: 22254–22259

A high spectral sensitivity interferometer based on the dispersive property of the semiconductor GaAs

YuanXue Cai, YunDong Zhang, ChaoBo Yang, BoShi Dang, Jinfang Wang, and Ping Yuan  »View Author Affiliations

Optics Express, Vol. 17, Issue 24, pp. 22254-22259 (2009)

View Full Text Article

Enhanced HTML    Acrobat PDF (166 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We develop an interferometer which has high spectral sensitivity based on the dispersive property of the semiconductor GaAs in the near-infrared region. Our experiment demonstrates that the spectral sensitivity could be greatly enhanced by adding a slow light medium into the interferometer and is proportional to the group index of the material. Subsequently the factors which influence the spectral sensitivity of the interferometer are analyzed. Moreover, we provide potential applications of such interferometers using the dispersive property of semiconductor in whole infrared region.

© 2009 OSA

OCIS Codes
(300.6340) Spectroscopy : Spectroscopy, infrared
(300.6420) Spectroscopy : Spectroscopy, nonlinear
(300.6470) Spectroscopy : Spectroscopy, semiconductors

ToC Category:

Original Manuscript: September 17, 2009
Revised Manuscript: November 1, 2009
Manuscript Accepted: November 10, 2009
Published: November 20, 2009

YuanXue Cai, YunDong Zhang, ChaoBo Yang, BoShi Dang, Jinfang Wang, and Ping Yuan, "A high spectral sensitivity interferometer based on the dispersive property of the semiconductor GaAs," Opt. Express 17, 22254-22259 (2009)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. Z. M. Shi, R. W. Boyd, D. J. Gauthier, and C. C. Dudley, “Enhancing the spectral sensitivity of interferometers using slow-light media,” Opt. Lett. 32(8), 915–917 (2007). [CrossRef] [PubMed]
  2. M. Chamanzar, B. Momeni, and A. Adibi, “Compact on-chip interferometers with high spectral sensitivity,” Opt. Lett. 34(2), 220–222 (2009). [CrossRef] [PubMed]
  3. D. D. Smith, K. Myneni, J. A. Odutola, and J. C. Diels, “Enhanced sensitivity of a passive optical cavity by an intracavity dispersive medium,” Phys. Rev. A 80(1), 011809 (2009). [CrossRef]
  4. L. V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, “Light speed reduction to 17 metres per second in an ultracold atomic gas,” Nature 397(6720), 594–598 (1999). [CrossRef]
  5. M. S. Bigelow, N. N. Lepeshkin, and R. W. Boyd, “Observation of Ultraslow Light Propagation in a Ruby Crystal at Room Temperature,” Phys. Rev. Lett. 90(11), 113903 (2003). [CrossRef] [PubMed]
  6. D. F. Phillips, A. Fleischhauer, A. Mair, and R. L. Walsworth, “Storage of Light in Atomic Vapor,” Phys. Rev. A 86, 783–786 (2001).
  7. R. Jacobsen, A. Lavrinenko, L. Frandsen, C. Peucheret, B. Zsigri, G. Moulin, J. Fage-Pedersen, and P. Borel, “Direct experimental and numerical determination of extremely high group indices in photonic crystal waveguides,” Opt. Express 13(20), 7861–7871 (2005), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-13-20-7861 . [CrossRef] [PubMed]
  8. Z. M. Shi, R. W. Boyd, R. M. Camacho, P. K. Vudyasetu, and J. C. Howell, “Slow-light fourier transform interferometer,” Phys. Rev. Lett. 99(24), 240801 (2007). [CrossRef] [PubMed]
  9. G. T. Purves, C. S. Adams, and I. G. Hughes, “Sagnac Interferometry in a slow-light medium,” Phys. Rev. A 74(2), 023805 (2006). [CrossRef]
  10. B. Jensen and A. Torabi, “Refractive index of hexagonal II–VI compounds CdSe, CdS, and CdSexS1−x,” J. Opt. Soc. Am. B 3(6), 857–863 (1986). [CrossRef]
  11. P. Hariharan, Optical Interferometry Second Edition.(Elsevier Science Inc., 2003)
  12. S. Kayali, G. Ponchak, and R. Shaw, GaAs MMIC Reliability Assurance Guideline, (JPL Publication 96–25), http://parts.jpl.nasa.gov/mmic/contents.htm
  13. B. Jensen, and A. Torabi, “Dispersion of the Refractive Index of GaAs and AlxGa1-xAs”, IEEE JQE 19 (5), 877–882 (1983)
  14. R. W. Boyd, Nonlinear optics Second Edition. (Elsevier Science Inc., 2003)
  15. W. Demtröder, Laser Spectroscopy:Basic Concepts and Instrumentation(Springer-Verlag,1982)
  16. K. D. Möller, Optics: learning by Computing, with Moder Examples Using MathCad, MATLAB, Mathcematica, and Maple, Second Edition (Springer Science-Business Media, LLC, 2007)
  17. T. Skauli, P. S. Kuo, K. L. Vodopyanov, T. J. Pinguet, O. Levi, L. A. Eyres, J. S. Harris, M. M. Fejer, B. Gerard, L. Becouarn, and E. Lallier, “Improved dispersion relations for GaAs and applications to nonlinear optics,” J. Appl. Phys. 94(10), 6447–6455 (2003). [CrossRef]
  18. Y. H. Lee, A. Chavez-Pirson, S. W. Koch, H. M. Gibbs, S. H. Park, J. Morhange, A. Jeffery, N. Peyghambarian, L. Banyai, A. C. Gossard, and W. Wiegmann, “Room-temperature optical nonlinearities in GaAs,” Phys. Rev. Lett. 57(19), 2446–2449 (1986). [CrossRef] [PubMed]
  19. M. D. Sturge, “Optical Absorption of Gallium Arsenide between 0.6 and 2.75 eV,” Phys. Rev. 127(3), 768–773 (1962). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 4
Fig. 3

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited