OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 17, Iss. 24 — Nov. 23, 2009
  • pp: 22260–22270

Reduction of chromatic dispersion due to coupling for synchronized-router-based flat-passband filter using multiple-input arrayed waveguide grating

Koichi Maru and Yusaku Fujii  »View Author Affiliations

Optics Express, Vol. 17, Issue 24, pp. 22260-22270 (2009)

View Full Text Article

Enhanced HTML    Acrobat PDF (261 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



An approach to reducing the chromatic dispersion due to coupling between input waveguides before the input slab for a synchronized-router-based flat-passband filter using a multiple-input arrayed waveguide grating (AWG) is proposed. The proposed method uses phase compensation at the waveguide array of the AWG by correction of waveguide lengths. The characteristics of the flat-passband filter that consists of a multiple-input AWG combined with cascaded Mach-Zehnder interferometers (MZIs) are simulated using a theoretical model of the multiple-input AWG based on Fourier optics and the coupled-mode theory. The simulation result reveals that the chromatic dispersion within the passband can be significantly reduced by using phase compensation and additional dummy waveguides at the input just before the slab.

© 2009 OSA

OCIS Codes
(130.0130) Integrated optics : Integrated optics
(230.7390) Optical devices : Waveguides, planar
(080.1238) Geometric optics : Array waveguide devices
(130.2755) Integrated optics : Glass waveguides
(130.7408) Integrated optics : Wavelength filtering devices

ToC Category:
Integrated Optics

Original Manuscript: October 5, 2009
Revised Manuscript: November 6, 2009
Manuscript Accepted: November 17, 2009
Published: November 20, 2009

Koichi Maru and Yusaku Fujii, "Reduction of chromatic dispersion due to coupling for synchronized-router-based flat-passband filter using multiple-input arrayed waveguide grating," Opt. Express 17, 22260-22270 (2009)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. K. Okamoto and H. Yamada, “Arrayed-waveguide grating multiplexer with flat spectral response,” Opt. Lett. 20(1), 43–45 (1995). [CrossRef] [PubMed]
  2. M. R. Amersfoort, J. B. D. Soole, H. P. LeBlanc, N. C. Andreadakis, A. Rajhel, and C. Caneau, “Passband broadening of integrated arrayed waveguide filters using multimode interference couplers,” Electron. Lett. 32(5), 449–451 (1996). [CrossRef]
  3. K. Okamoto and A. Sugita, “Flat spectral response arrayed-waveguide grating multiplexer with parabolic waveguide horns,” Electron. Lett. 32(18), 1661–1662 (1996). [CrossRef]
  4. C. Dragone, “Efficient techniques for widening the passband of a wavelength router,” J. Lightwave Technol. 16(10), 1895–1906 (1998). [CrossRef]
  5. G. H. B. Thompson, R. Epworth, C. Rogers, S. Day, and S. Ojha, “An original low-loss and pass-band flattened SiO2 on Si planar wavelength demultiplexer,” in Proceedings of Optical Fiber Communication Conference (OFC ’98), p. 77.
  6. T. Kamalakis and T. Sphicopoulos, “An efficient technique for the design of an arrayed-waveguide grating with flat spectral response,” J. Lightwave Technol. 19(11), 1716–1725 (2001). [CrossRef]
  7. J.-J. He, “Phase-dithered waveguide grating with flat passband and sharp transitions,” J. Select. Topics Quantum Electron. 8(6), 1186–1193 (2002). [CrossRef]
  8. C. R. Doerr, L. W. Stulz, R. Pafchek, and S. Shunk, “Compact and low-loss manner of waveguide grating router passband flattening and demonstration in a 64-channel blocker/multiplexer,” IEEE Photon. Technol. Lett. 14(1), 56–58 (2002). [CrossRef]
  9. M. Kohtoku, H. Takahashi, I. Kitoh, I. Shibata, Y. Inoue, and Y. Hibino, “Low-loss flat-top passband arrayed waveguide gratings realised by first-order mode assistance method,” Electron. Lett. 38(15), 792–794 (2002). [CrossRef]
  10. C. Dragone, “Theory of wavelength multiplexing with rectangular transfer functions,” J. Select. Topics Quantum Electron. 8(6), 1168–1178 (2002). [CrossRef]
  11. C. R. Doerr, R. Pafchek, and L. W. Stulz, “Integrated band demultiplexer using waveguide grating routers,” IEEE Photon. Technol. Lett. 15(8), 1088–1090 (2003). [CrossRef]
  12. C. R. Doerr, M. A. Cappuzzo, E. Y. Chen, A. Wong-Foy, and L. T. Gomez, “Low-loss rectangular-passband multiplexer consisting of a waveguide grating router synchronized to a three-arm interferometer,” IEEE Photon. Technol. Lett. 17(11), 2334–2336 (2005). [CrossRef]
  13. C. R. Doerr, M. A. Cappuzzo, E. Y. Chen, A. Wong-Foy, L. T. Gomez, and L. L. Buhl, “Wideband arrayed waveguide grating with three low-loss maxima per passband,” IEEE Photon. Technol. Lett. 18(21), 2308–2310 (2006). [CrossRef]
  14. K. Maru, T. Mizumoto, and H. Uetsuka, “Modeling of multi-input arrayed waveguide grating and its application to design of flat-passband response using cascaded Mach-Zehnder interferometers,” J. Lightwave Technol. 25(2), 544–555 (2007). [CrossRef]
  15. K. Maru, T. Mizumoto, and H. Uetsuka, “Flat-passband arrayed waveguide grating employing cascaded Mach-Zehnder interferometers,” in Proceedings of 11th Optoelectronics and Communications Conf. (OECC2006), 5B2–5.
  16. C. Dragone, “Efficient N x N star couplers using Fourier optics,” J. Lightwave Technol. 7(3), 479–489 (1989). [CrossRef]
  17. H. Takenouchi, H. Tsuda, and T. Kurokawa, “Analysis of optical-signal processing using an arrayed-waveguide grating,” Opt. Express 6(6), 124–135 (2000). [CrossRef] [PubMed]
  18. P. Muñoz, D. Pastor, and J. Capmany, “Modeling and design of arrayed waveguide gratings,” J. Lightwave Technol. 20(4), 661–674 (2002). [CrossRef]
  19. K. Maru, T. Mizumoto, and H. Uetsuka, “Demonstration of flat-passband multi/demultiplexer using multi-input arrayed waveguide grating combined with cascaded Mach-Zehnder interferometers,” J. Lightwave Technol. 25(8), 2187–2197 (2007). [CrossRef]
  20. K. Maru, T. Mizumoto, and H. Uetsuka, “Super-high-Δ silica-based flat-passband filter using AWG and cascaded Mach-Zehnder interferometers,” in Proceedings of 12th Optoelectronics and Communications Conf./16th International Conf. on Integrated Optics and Optical Fiber Communication (OECC/IOOC2007), 12E4–3.
  21. C. R. Doerr, L. W. Stulz, R. Pafchek, L. Gomez, M. Cappuzzo, A. Paunescu, E. Laskowski, L. Buhl, H. K. Kim, and S. Chandrasekhar, “An automatic 40-wavelength channelized equalizer,” IEEE Photon. Technol. Lett. 12(9), 1195–1197 (2000). [CrossRef]
  22. N. Takato, K. Jinguji, M. Yasu, H. Toba, and M. Kawachi, “Silica-based single-mode waveguides on silicon and their application to guided-wave optical interferometers,” J. Lightwave Technol. 6(6), 1003–1010 (1988). [CrossRef]
  23. B. H. Verbeek, C. H. Henry, N. A. Olsson, K. J. Orlowsky, R. F. Kazarinov, and B. H. Johnson, “Integrated four-channel Mach-Zehnder multi/demultiplexer fabricated with phosphorous doped SiO2 waveguides on Si,” J. Lightwave Technol. 6(6), 1011–1015 (1988). [CrossRef]
  24. C. K. Madsen, and J. H. Zhao, Optical filter design and analysis (John Willey & Sons, New York, 1999), pp. 171–177.
  25. H. Dym, and H. P. McKean, Fourier series and integrals (Academic Press, New York, 1972), Chap. 1, pp. 31–32.
  26. A. Yariv, “Coupled-mode theory for guided-wave optics,” J. Quantum Electron. 9(9), 919–933 (1973). [CrossRef]
  27. E. Kapon, J. Katz, and A. Yariv, “Supermode analysis of phase-locked arrays of semiconductor lasers,” Opt. Lett. 9(4), 125–127 (1984). [CrossRef] [PubMed]
  28. C. R. Doerr, M. Cappuzzo, E. Laskowski, A. Paunescu, L. Gomez, L. W. Stulz, and J. Gates, “Dynamic wavelength equalizer in silica using the single-filtered-arm interferometer,” IEEE Photon. Technol. Lett. 11(5), 581–583 (1999). [CrossRef]
  29. I. Kaminow, and T. Li, Optical Fiber Telecommunications IVA (Academic Press, San Diego, 2002), pp. 424–427.
  30. K. Takada, T. Tanaka, M. Abe, T. Yanagisawa, M. Ishii, and K. Okamoto, “Beam-adjustment-free crosstalk reduction in a 10 GHz-spaced arrayed-waveguide grating via photosensitivity under UV laser irradiation through metal mask,” Electron. Lett. 36(1), 60–61 (2000). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article

OSA is a member of CrossRef.

CrossCheck Deposited