OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 17, Iss. 25 — Dec. 7, 2009
  • pp: 22271–22280

Broadband hitless silicon electro-optic switch for on-chip optical networks

Hugo L. R. Lira, Sasikanth Manipatruni, and Michal Lipson  »View Author Affiliations


Optics Express, Vol. 17, Issue 25, pp. 22271-22280 (2009)
http://dx.doi.org/10.1364/OE.17.022271


View Full Text Article

Enhanced HTML    Acrobat PDF (536 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We report on the demonstration of a broadband (60 GHz), spectrally hitless, compact (20 µm x 40 µm), fast (7 ns) electro-optical switch. The device is composed of two coupled resonant cavities, each with an independently addressable PIN diode. This topology enables operation of the switch without perturbing adjacent channels in a wavelength division multiplexing (WDM) system.

© 2009 OSA

OCIS Codes
(230.3120) Optical devices : Integrated optics devices
(250.3140) Optoelectronics : Integrated optoelectronic circuits
(230.4555) Optical devices : Coupled resonators
(250.6715) Optoelectronics : Switching

ToC Category:
Optoelectronics

History
Original Manuscript: September 11, 2009
Revised Manuscript: November 12, 2009
Manuscript Accepted: November 16, 2009
Published: November 23, 2009

Citation
Hugo L. R. Lira, Sasikanth Manipatruni, and Michal Lipson, "Broadband hitless silicon electro-optic switch 
for on-chip optical networks," Opt. Express 17, 22271-22280 (2009)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-17-25-22271


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. A. Shacham, K. Bergman, and L. P. Carloni, “On the Design of a Photonic Network-on-Chip,” in Proceedings of IEEE International Symposium on Networks-on-Chips (IEEE, 2007), pp. 53–64.
  2. C. Batten, A. Joshi, J. Orcutt, A. Khilo, B. Moss, C. Holzwarth, M. Popovic, H. Li, H. Smith, J. Hoyt, F. Kartner, R. Ram, V. Stojanovic, and K. Asanovic, “Building Manycore Processor-to-DRAM Networks with Monolithic Silicon Photonics,” in 16th IEEE Symposium on High Performance Interconnects, 2008. HOTI '08, 21–30, 26–28 Aug. 2008.
  3. International Technology Roadmap for Semiconductors, (ITRS 2007) http://www.itrs.net/Links/2007ITRS/2007_Chapters/2007_Interconnect.pdf .
  4. A. W. Poon, X. Luo, F. Xu, and H. Chen, “Cascaded microresonator-based matrix switch for silicon on-chip optical interconnection,” Proc. IEEE 97(7), 1216–1238 (2009). [CrossRef]
  5. B. G. Lee, B. A. Small, K. Bergman, Q. Xu, and M. Lipson, “Transmission of high-data-rate optical signals through a micrometer-scale silicon ring resonator,” Opt. Lett. 31(18), 2701–2703 (2006). [CrossRef] [PubMed]
  6. F. J. Mesa-Martinez, M. Brown, J. Nayfach-Battilana, and J. Renau, “Measuring performance, power, and temperature from real processors,” in Proc. of the 2007 Workshop on Experimental Computer Science, San Diego, CA, Jun. 13 - 14, 2007. ExpCS '07. ACM, New York, NY.
  7. Y. Goebuchi, T. Ka, and Y. Kokubun, “Fast and Stable Wavelength-Selective Switch Using Double-Series Coupled Dielectric Microring Resonator,” IEEE Photon. Technol. Lett. 18(3), 538–540 (2006). [CrossRef]
  8. Y. Goebuchi, M. Hisada, T. Kato, and Y. Kokubun, “Optical cross-connect circuit using hitless wavelength selective switch,” Opt. Express 16(2), 535–548 (2008). [CrossRef] [PubMed]
  9. M. A. Popović, T. Barwicz, F. Gan, M. S. Dahlem, C. W. Holzwarth, P. T. Rakich, H. I. Smith, E. P. Ippen, and F. X. Kärtner, “Transparent wavelength switching of resonant filters,” presented at Conference on Lasers and Electro-Optics (CLEO), Baltimore, MD, May 10, 2007, postdeadline paper CPDA2.
  10. Y. Vlasov, W. M. J. Green, and F. Xia, “High-throughput silicon nanophotonic wavelength-insensitive switch for on-chip optical networks,” Nat. Photonics 2(4), 242–246 (2008). [CrossRef]
  11. H. A. Haus, M. A. Popović, and M. R. Watts, “Broadband Hitless Bypass Switch for Integrated Photonic Circuits,” IEEE Photon. Technol. Lett. 18(10), 1137–1139 (2006). [CrossRef]
  12. S. Y. Cho and R. Soref, “Interferometric microring-resonant 2 x 2 optical switches,” Opt. Express 16(17), 13304–13314 (2008). [CrossRef] [PubMed]
  13. M. Watts, D. C. Trotter, and R. W. Young, “Maximally Confined High-Speed Second-Order Silicon Microdisk Switches,” in National Fiber Optic Engineers Conference, OSA Technical Digest (CD) (Optical Society of America, 2008), paper PDP14.
  14. C. Li, X. Luo, and A. W. Poon, “Dual-microring-resonator electro-optic logic switches on a silicon chip,” Semicond. Sci. Technol. 23(6), 064010 (2008). [CrossRef]
  15. S. Manipatruni, Q. Xu, B. Schmidt, J. Shakya, and M. Lipson, “High Speed Carrier Injection 18 Gb/s Silicon Micro-ring Electro-optic Modulator,” in The 20th Annual Meeting of the IEEE Lasers and Electro-Optics Society (IEEE, 2007), p. 537.
  16. M. W. Geis, S. J. Spector, R. C. Williamson, and T. M. Lyszczarz, “Submicrosecond Submilliwatt Silicon-on-Insulator Thermooptic Switch,” IEEE Photon. Technol. Lett. 16(11), 2514–2516 (2004). [CrossRef]
  17. R. Orta, P. Savi, R. Tascone, and D. Trinchero, “Synthesis of Multiple-Ring-Resonator Filters for Optical Systems,” IEEE Photon. Technol. Lett. 7(12), 1447–1449 (1995). [CrossRef]
  18. B. E. Little, S. T. Chu, H. A. Haus, J. Foresi, and J.-P. Laine, “Microring Resonator Channel Dropping Filters,” J. Lightwave Technol. 15(6), 998–1005 (1997). [CrossRef]
  19. A. Melloni and M. Martinelli, “Synthesis of Direct-Coupled-Resonators Bandpass Filters for WDM Systems,” J. Lightwave Technol. 20(2), 296–303 (2002). [CrossRef]
  20. A. Yariv, “Universal relations for coupling of optical power between microresonators and dielectric waveguides,” Electron. Lett. 36(4), 321–322 (2000). [CrossRef]
  21. J. Poon, J. Scheuer, S. Mookherjea, G. T. Paloczi, Y. Huang, and A. Yariv, “Matrix analysis of microring coupled-resonator optical waveguides,” Opt. Express 12(1), 90–103 (2004). [CrossRef] [PubMed]
  22. F. Xia, L. Sekaric, and Y. A. Vlasov, “Mode conversion losses in silicon-on-insulator photonic wire based racetrack resonators,” Opt. Express 14(9), 3872–3886 (2006). [CrossRef] [PubMed]
  23. Q. Xu, B. Schmidt, S. Pradhan, and M. Lipson, “Micrometre-scale silicon electro-optic modulator,” Nature 435(7040), 325–327 (2005). [CrossRef] [PubMed]
  24. C. Manolatou and M. Lipson, “All-Optical Silicon Modulators Based on Carrier Injection by Two-Photon Absorption,” J. Lightwave Technol. 24(3), 1433–1439 (2006). [CrossRef]
  25. Y. P. Varshni, “Temperature dependence of the energy gap in semiconductors,” Physica E (Amsterdam) 34(1), 149–154 (1967). [CrossRef]
  26. P. Dumon, G. Priem, L. R. Nunes, W. Bogaerts, D. van Thourhout, P. Bienstman, T. K. Liang, M. Tsuchiya, P. Jaenen, S. Beckx, J. Wouters, and R. Baets, “Linear and Nonlinear Nanophotonic Devices Based on Silicon-on-Insulator Wire Waveguides,” Jpn. J. Appl. Phys. 45(No. 8B), 6589–6602 (2006). [CrossRef]
  27. R. A. Soref and B. R. Bennett, “Electrooptical Effects in Silicon,” IEEE J. Quantum Electron. 23(1), 123–129 (1987). [CrossRef]
  28. H. C. Huang, S. Yee, and M. Soma, “Quantum calculations of the change of refractive index due to free carriers in silicon with nonparabolic band structure,” J. Appl. Phys. 67(4), 2033–2039 (1990). [CrossRef]
  29. J. T. Robinson, K. Preston, O. Painter, and M. Lipson, “First-principle derivation of gain in high-index-contrast waveguides,” Opt. Express 16(21), 16659–16669 (2008). [CrossRef] [PubMed]
  30. S. Manipatruni, Q. Xu, and M. Lipson, “PINIP based high-speed high-extinction ratio micron-size silicon electrooptic modulator,” Opt. Express 15(20), 13035–13042 (2007). [CrossRef] [PubMed]
  31. J. Van Campenhout, W. M. J. Green, X. Liu, S. Assefa, R. M. Osgood, and Y. A. Vlasov, “Silicon-nitride surface passivation of submicrometer silicon waveguides for low-power optical switches,” Opt. Lett. 34(10), 1534–1536 (2009). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited