OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 17, Iss. 25 — Dec. 7, 2009
  • pp: 22333–22340

Polarization measurements through space-to-ground atmospheric propagation paths by using a highly polarized laser source in space

Morio Toyoshima, Hideki Takenaka, Yozo Shoji, Yoshihisa Takayama, Yoshisada Koyama, and Hiroo Kunimori  »View Author Affiliations

Optics Express, Vol. 17, Issue 25, pp. 22333-22340 (2009)

View Full Text Article

Enhanced HTML    Acrobat PDF (347 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The polarization characteristics of an artificial laser source in space were measured through space-to-ground atmospheric transmission paths. An existing Japanese laser communication satellite and optical ground station were used to measure Stokes parameters and the degree of polarization of the laser beam transmitted from the satellite. As a result, the polarization was preserved within an rms error of 1.6°, and the degree of polarization was 99.4±4.4% through the space-to-ground atmosphere. These results contribute to the link estimation for quantum key distribution via space and provide the potential for enhancements in quantum cryptography worldwide in the future.

© 2009 OSA

OCIS Codes
(010.1300) Atmospheric and oceanic optics : Atmospheric propagation
(010.3310) Atmospheric and oceanic optics : Laser beam transmission
(260.5430) Physical optics : Polarization
(060.2605) Fiber optics and optical communications : Free-space optical communication
(270.5568) Quantum optics : Quantum cryptography

ToC Category:
Atmospheric and Oceanic Optics

Original Manuscript: September 2, 2009
Revised Manuscript: November 9, 2009
Manuscript Accepted: November 11, 2009
Published: November 23, 2009

Morio Toyoshima, Hideki Takenaka, Yozo Shoji, Yoshihisa Takayama, Yoshisada Koyama, and Hiroo Kunimori, "Polarization measurements through space-to-ground atmospheric propagation paths by using a highly polarized laser source in space," Opt. Express 17, 22333-22340 (2009)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. Ministry of Education, Culture, Sports, Science and Technology (MEXT) “Report on science and technology policy on contributing the secure and safety society,” http://www.mext.go.jp/a_menu/kagaku/anzen/houkoku/04042302/all.pdf (in Japanese, 2004)
  2. C. H. Bennett, and G. Brassard, “Quantum cryptography: public key distribution and coin tossing,” Proc. International Conference on Computers, Systems & Signal Processing, Bangalore, India, (1984).
  3. N. Gisin, G. Ribordy, W. Tittel, and H. Zbinden, “Quantum cryptography,” Rev. Mod. Phys. 74(1), 145–195 (2002). [CrossRef]
  4. D. Bouwmeester, A. Ekert, and A. Zeilinger, eds., The Physics of Quantum Information, (Springer, New York, 2000).
  5. M. Fujiwara, M. Takeoka, J. Mizuno, and M. Sasaki, “Exceeding the classical capacity limit in a quantum optical channel,” Phys. Rev. Lett. 90(16), 167906 (2003). [CrossRef] [PubMed]
  6. Specification sheet of Cerberis, http://www.idquantique.com/products/files/Cerberis-specs.pdf
  7. Data sheet of MAGIQ QPN 8505, http://www.magiqtech.com/MagiQ/Products_files/8505_Data_Sheet.pdf
  8. Data sheet of SQBox Defender, http://www.smartquantum.com/IMG/pdf/SQBox_Defender_Datasheet-3.pdf
  9. M. E. Peck, “Geneva Vote Will Use Quantum Cryptography,” http://spectrum.ieee.org/oct07/5634
  10. R. J. Hughes, J. E. Nordholt, D. Derkacs, and C. G. Peterson, “Practical free-space quantum key distribution over 10 km in daylight and at night,” N. J. Phys. 4, 43 (2002). [CrossRef]
  11. J. W. Strohbehn and S. F. Clifford, “Polarization and Angle-of -Arrival Fluctuatifoonr sa Plane Wave Propagated Through a Turbulent Medium,” IEEE Trans. on Antennas and Propagation, AP 15(3), 416–421 (1967). [CrossRef]
  12. E. Collett and R. Alferness, “Depolarization of a Laser Beam in a Turbulent Medium,” J. Opt. Soc. Am. 62(4), 529–533 (1972). [CrossRef]
  13. D. Höhn, “Depolarization of a Laser Beam at 6328 Ǻ due to Atmospheric Transmission,” Appl. Opt. 8(2), 367–369 (1969). [CrossRef] [PubMed]
  14. J. N. Bradford and J. W. Tucker, “A Sensitive System for Measuring Atmospheric Depolarization of Light,” Appl. Opt. 8(3), 645–647 (1969). [CrossRef]
  15. M. Breger and J. C. Hsu, “On standard polarized stars,” Astrophys. J. 262, 732–738 (1982). [CrossRef]
  16. Interstellar-polarized standard stars, University of Arizona, http://chinadoll.as.arizona.edu/~schmidt/spol/polstds.html
  17. D. Batcheldor, A. Robinson, D. Axon, D. C. Hines, W. Sparks, and C. Tadhunter, “The NICMOS polarimetric calibration,” Publ. Astron. Soc. Pac. 118(842), 642–650 (2006). [CrossRef]
  18. G. D. Schmidt, R. Elston, and O. L. Lupie, “The Hubble Space Telescope northern-hemisphere grid of stellar polarimetric standards,” Astron. J. 104(4), 1563–1567 (1992). [CrossRef]
  19. J. Grosinger, “Investigation of Polarization Modulation in Optical Free Space Communications through the Atmosphere,” Master Thesis, Technical University of Vienna, February, (2008).
  20. S. R. Pal and A. I. Carswell, “The Polarization Characteristics of Lidar Scattering from Snow and Ice Crystals in the Atmosphere,” J. Appl. Meteorol. 16(1), 70–80 (1977). [CrossRef]
  21. Y. A. Kravtsov, “New effects in wave propagation and scattering in random media (a mini review),” Appl. Opt. 32(15), 2681–2691 (1993). [CrossRef] [PubMed]
  22. M. I. Mishchenko and L. D. Travis, “Satellite retrieval of aerosol properties over the ocean using polarization as well as intensity of reflected sunlight,” J. Geophys. Res. 102(D14D14), 16989–17013 (1997). [CrossRef]
  23. Y. Jiang, Y. L. Yung, S. P. Stander, and L. D. Travis, “Modeling of atmospheric radiative transfer with polarization and its application to the remote sensing of tropospheric ozone,” J. Quant. Spectrosc. Radiat. Transf. 84(2), 169–179 (2004). [CrossRef]
  24. X. Guo, V. Natraj, D. R. Feldman, F. J. D. Spur, R.-L. Shia, S. P. Sander, and Y. L. Yung, “Retrieval of ozone profile from ground-based measurements with polarization: A synthetic study,” J. Quant. Spectrosc. Radiat. Transf. 103(1), 175–192 (2007). [CrossRef]
  25. M. Toyoshima, T. Takahashi, K. Suzuki, S. Kimura, K. Takizawa, T. Kuri, W. Klaus, M. Toyoda, H. Kunimori, T. Jono, Y. Takayama, and K. Arai, “Ground-to-satellite laser communication experiments,” IEEE AES Magazine 23, 10–18 (2008). [CrossRef]
  26. M. Toyoshima, T. Yamakawa, K. Yamawaki, and Arai, “Reconfirmation of the optical performances of the laser communications terminal onboard the OICETS satellite,” Acta Astronaut. 55(3-9), 261–269 (2004). [CrossRef]
  27. M. Born, and E. Wolf, Principles of Optics–7th ed. (Cambridge University Press, London, 1999).
  28. D. Roddy, Satellite communications–2nd ed. (McGraw-Hill, New York, 1989).
  29. R. Ursin, F. Tiefenbacher, T. Schmitt-Manderbach, H. Weier, T. Scheidl, M. Lindenthal, B. Blauensteiner, T. Jennewein, J. Perdigues, P. Trojek, B. Ömer, M. Fürst, M. Meyenburg, J. Rarity, Z. Sodnik, C. Barbieri, H. Weinfurter, and A. Zeilinger, “Entanglement based quantum communication over 144 km,” Nat. Phys. 3(7), 481–486 (2007). [CrossRef]
  30. N. J. Cerf, M. Bourennane, A. Karlsson, and N. Gisin, “Security of Quantum Key Distribution Using d-Level Systems,” Phys. Rev. Lett. 88(127902), 1–4 (2002). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited