OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 17, Iss. 25 — Dec. 7, 2009
  • pp: 22341–22350

Optical monitoring of oxygen tension in cortical microvessels with confocal microscopy

Mohammad A. Yaseen, Vivek J. Srinivasan, Sava Sakadžić, Weicheng Wu, Svetlana Ruvinskaya, Sergei A. Vinogradov, and David A. Boas  »View Author Affiliations

Optics Express, Vol. 17, Issue 25, pp. 22341-22350 (2009)

View Full Text Article

Enhanced HTML    Acrobat PDF (677 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Evaluating cerebral oxygenation is of critical importance for the understanding of brain function and several neuropathologies. Although several techniques exist for measuring cerebral oxygenation in vivo, the most widely accepted techniques offer limited spatial resolution. We have developed a confocal imaging system for minimally invasive measurement of oxygen tension (pO2) in cerebral microvessels with high spatial and temporal resolution. The system relies on the phosphorescence quenching method using exogenous porphyrin-based dendritic oxygen probes. Here we present high-resolution phosphorescence images of cortical microvasculature and temporal pO2 profiles from multiple locations in response to varied fraction of inspired oxygen and functional activation.

© 2009 OSA

OCIS Codes
(170.1470) Medical optics and biotechnology : Blood or tissue constituent monitoring
(170.3650) Medical optics and biotechnology : Lifetime-based sensing
(180.1790) Microscopy : Confocal microscopy

ToC Category:
Medical Optics and Biotechnology

Original Manuscript: September 4, 2009
Revised Manuscript: October 18, 2009
Manuscript Accepted: October 22, 2009
Published: November 23, 2009

Virtual Issues
Vol. 5, Iss. 1 Virtual Journal for Biomedical Optics

Mohammad A. Yaseen, Vivek J. Srinivasan, Sava Sakadžić, Weicheng Wu, Svetlana Ruvinskaya, Sergei A. Vinogradov, and David A. Boas, "Optical monitoring of oxygen tension in cortical microvessels with confocal microscopy," Opt. Express 17, 22341-22350 (2009)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. R. G. Shulman, F. Hyder, and D. L. Rothman, “Biophysical basis of brain activity: implications for neuroimaging,” Q. Rev. Biophys. 35(3), 287–325 (2002). [CrossRef] [PubMed]
  2. P. B. Jones, H. K. Shin, D. A. Boas, B. T. Hyman, M. A. Moskowitz, C. Ayata, and A. K. Dunn, “Simultaneous multispectral reflectance imaging and laser speckle flowmetry of cerebral blood flow and oxygen metabolism in focal cerebral ischemia,” J. Biomed. Opt. 13(4), 044007 (2008). [CrossRef] [PubMed]
  3. K. Nagata, M. Sato, Y. Satoh, Y. Watahiki, Y. Kondoh, M. Sugawara, G. Box, D. Wright, S. Leung, H. Yuya, and E. Shimosegawa, “Hemodynamic aspects of Alzheimer’s Disease,” Ann. N. Y. Acad. Sci. 977(1), 391–402 (2002). [CrossRef] [PubMed]
  4. H. M. Swartz, “Measuring real levels of oxygen in vivo: opportunities and challenges,” Biochem. Soc. Trans. 30(2), 248–252 (2002). [CrossRef] [PubMed]
  5. J. L. Tatum, G. J. Kelloff, R. J. Gillies, J. M. Arbeit, J. M. Brown, K. S. C. Chao, J. D. Chapman, W. C. Eckelman, A. W. Fyles, A. J. Giaccia, R. P. Hill, C. J. Koch, M. C. Krishna, K. A. Krohn, J. S. Lewis, R. P. Mason, G. Melillo, A. R. Padhani, G. Powis, J. G. Rajendran, R. Reba, S. P. Robinson, G. L. Semenza, H. M. Swartz, P. Vaupel, D. Yang, B. Croft, J. Hoffman, G. Liu, H. Stone, and D. Sullivan, “Hypoxia: Importance in tumor biology, noninvasive measurement by imaging, and value of its measurement in the management of cancer therapy,” Int. J. Radiat. Biol. 82(10), 699–757 (2006). [CrossRef] [PubMed]
  6. F. Hyder, “Dynamic Imaging of Brain Function,” in Dynamic Brain Imaging: Multi-Modal Methods and In Vivo Applications, F. Hyder, ed. (Humana Press, Totowa, NJ, 2009), pp. 3–21.
  7. I. Kida, and F. Hyder, “Physiology of Functional Magnetic Resonance Imaging,” in Magnetic Resonance Imaging: Methods and Biologic Applications, P. V. Prasad, ed. (Humana Press Inc., Totowa, NJ, 2006).
  8. D. S. Vikram, J. L. Zweier, and P. Kuppusamy, “Methods for Noninvasive Imaging of Tissue Hypoxia,” Antioxid. Redox Signal. 9(10), 1745–1756 (2007). [CrossRef] [PubMed]
  9. W. L. Rumsey, J. M. Vanderkooi, and D. F. Wilson, “Imaging of Phosphorescence: A Novel Method for Measuring Oxygen Distribution in Perfused Tissue,” Science 241(4873), 1649–1651 (1988). [CrossRef] [PubMed]
  10. S. A. Vinogradov, L.-W. Lo, and D. F. Wilson, “Dendritic Polyglutamic Porphyrins: Probing Porphyrin Protection by Oxygen-Dependent Quenching of Phosphorescence,” Chem. Eur. J. 5(4), 1338–1347 (1999). [CrossRef]
  11. I. Dunphy, S. A. Vinogradov, and D. F. Wilson, “Oxyphor R2 and G2: phosphors for measuring oxygen by oxygen-dependent quenching of phosphorescence,” Anal. Biochem. 310(2), 191–198 (2002). [CrossRef] [PubMed]
  12. A. Y. Lebedev, A. V. Cheprakov, S. Sakadžić, D. A. Boas, D. F. Wilson, and S. A. Vinogradov, “Dendritic Phosphorescent Probes for Oxygen Imaging in Biological Systems,” ACS Applied Materials & Interfaces 1(6), 1292–1304 (2009). [CrossRef]
  13. I. P. Torres Filho and M. Intaglietta, “Microvessel PO2 measurements by phosphorescence decay method,” Am. J. Physiol. 265(4 Pt 2), H1434–H1438 (1993). [PubMed]
  14. R. D. Shonat, D. F. Wilson, C. E. Riva, and M. Pawlowski, “Oxygen distribution in the retinal and choroidal vessels of the cat as measured by a new phosphorescence imaging method,” Appl. Opt. 31(19), 3711–3718 (1992). [CrossRef] [PubMed]
  15. M. Intaglietta, P. C. Johnson, and R. M. Winslow, “Microvascular and tissue oxygen distribution,” Cardiovasc. Res. 32(4), 632–643 (1996). [PubMed]
  16. E. G. Mik, T. Johannes, and C. Ince, “Monitoring of renal venous PO2 and kidney oxygen consumption in rats by a near-infrared phosphorescence lifetime technique,” Am. J. Physiol. Renal Physiol. 294(3), F676–F681 (2008). [CrossRef] [PubMed]
  17. R. L. Plant and D. H. Burns, “Quantitative, Depth-Resolved Imaging of Oxygen Concentration by Phosphorescence Lifetime Measurement,” Appl. Spectrosc. 47(10), 1594–1599 (1993). [CrossRef]
  18. I. Filho, M. Leunig, F. Yuan, M. Intaglietta, and R. K. Jain, “Noninvasive measurement of microvascular and interstitial oxygen profiles in a human tumor in SCID mice,” Proc. Natl. Acad. Sci. U.S.A. 91(6), 2081–2085 (1994). [CrossRef] [PubMed]
  19. I. P. Torres Filho, H. Kerger, and M. Intaglietta, “pO2 Measurements in Arteriolar Networks,” Microvasc. Res. 51(2), 202–212 (1996). [CrossRef] [PubMed]
  20. A. G. Tsai, B. Friesenecker, M. C. Mazzoni, H. Kerger, D. G. Buerk, P. C. Johnson, and M. Intaglietta, “Microvascular and tissue oxygen gradients in the rat mesentery,” Proc. Natl. Acad. Sci. U.S.A. 95(12), 6590–6595 (1997). [CrossRef]
  21. D. F. Wilson, S. A. Vinogradov, P. Grosul, M. N. Vaccarezza, A. Kuroki, and J. Bennett, “Oxygen distribution and vascular injury in the mouse eye measured by phosphorescence-lifetime imaging,” Appl. Opt. 44(25), 5239–5248 (2005). [CrossRef] [PubMed]
  22. A. S. Golub and R. N. Pittman, “PO2 measurements in the microcirculation using phosphorescence quenching microscopy at high magnification,” Am. J. Physiol. Heart Circ. Physiol. 294(6), 2905–2916 (2008). [CrossRef]
  23. A. S. Golub, M. C. Barker, and R. N. Pittman, “Microvascular oxygen tension in the rat mesentery,” Am. J. Physiol. Heart Circ. Physiol. 294(1), H21–H28 (2007). [CrossRef] [PubMed]
  24. O. S. Finikova, A. Y. Lebedev, A. Aprelev, T. Troxler, F. Gao, C. Garnacho, S. Muro, R. M. Hochstrasser, and S. A. Vinogradov, “Oxygen Microscopy by Two-Photon-Excited Phosphorescence,” ChemPhysChem 9(12), 1673–1679 (2008). [CrossRef] [PubMed]
  25. A. D. Estrada, A. Ponticorvo, T. N. Ford, and A. K. Dunn, “Microvascular oxygen quantification using two-photon microscopy,” Opt. Lett. 33(10), 1038–1040 (2008). [CrossRef] [PubMed]
  26. E. M. C. Hillman, A. Devor, M. B. Bouchard, A. K. Dunn, G. W. Krauss, J. Skoch, B. J. Bacskai, A. M. Dale, and D. A. Boas, “Depth-resolved optical imaging and microscopy of vascular compartment dynamics during somatosensory stimulation,” Neuroimage 35(1), 89–104 (2007). [CrossRef] [PubMed]
  27. S. Sakadžić, S. Yuan, E. Dilekoz, S. Ruvinskaya, S. A. Vinogradov, C. Ayata, and D. A. Boas, “Simultaneous imaging of cerebral partial pressure of oxygen and blood flow during functional activation and cortical spreading depression,” Appl. Opt. 48(10), D169–D177 (2009). [CrossRef] [PubMed]
  28. E. P. Vovenko, “Distribution of oxygen tension on the surface of arterioles, capillaries, and venules of brain cortex and in tissue in normoxia: an experimental study on rats,” Pfluegers Arch. Eur. J. Physiol. 437(4), 617–623 (1999). [CrossRef]
  29. K. Masamoto, T. Kurachi, N. Takizawa, H. Kobayashi, and K. Tanishita, “Successive depth variations in microvascular distribution of rat somatosensory cortex,” Brain Res. 995(1), 66–75 (2004). [CrossRef]
  30. R. V. Harrison, N. Harel, J. Panesar, and R. J. Mount, “Blood Capillary Distribution Correlates with Hemodynamic-based Functional Imaging in Cerebral Cortex,” Cereb. Cortex (Cary) 12(3), 225–233 (2002). [CrossRef]
  31. S. A. Vinogradov, L.-W. Lo, W. T. Jenkins, S. M. Evans, C. Koch, and D. F. Wilson, “Noninvasive Imaging of the Distribution in Oxygen in Tissue In Vivo Using Near-Infrared Phosphors,” Biophys. J. 70(4), 1609–1617 (1996). [CrossRef] [PubMed]
  32. F. Reina-De La Torre, A. Rodriguez-Baeza, and J. Sahuquillo-Barris, “Morphological Characteristics and Distribution Pattern of the Arterial Vessels in Human Cerebral Cortex: A Scanning Electron Microscope Study,” Anat. Rec. 251(1), 87–96 (1998). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited