OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 17, Iss. 25 — Dec. 7, 2009
  • pp: 22351–22357

Nanoscale residual stress-field mapping around nanoindents in SiC by IR s-SNOM and confocal Raman microscopy

Alexander M. Gigler, Andreas J. Huber, Michael Bauer, Alexander Ziegler, Rainer Hillenbrand, and Robert W. Stark  »View Author Affiliations

Optics Express, Vol. 17, Issue 25, pp. 22351-22357 (2009)

View Full Text Article

Enhanced HTML    Acrobat PDF (423 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We map a nanoindent in a silicon carbide (SiC) crystal by infrared (IR) scattering-type scanning near-field optical microscopy (s-SNOM) and confocal Raman microscopy and interpret the resulting images in terms of local residual stress-fields. By comparing near-field IR and confocal Raman images, we find that the stress-induced shifts of the longitudinal optical phonon-frequencies (LO) and the related shift of the phonon-polariton near-field resonance give rise to Raman and s-SNOM image contrasts, respectively. We apply single-frequency IR s-SNOM for nanoscale resolved imaging of local stress-fields and confocal Raman microscopy to obtain the complete spectral information about stress-induced shifts of the phonon frequencies at diffraction limited spatial resolution. The spatial extension of the local stress-field around the nanoindent agrees well between both techniques. Our results demonstrate that both methods ideally complement each other, allowing for the detailed analysis of stress-fields at e.g. material and grain boundaries, in Micro-Electro-Mechanical-Systems (MEMS), or in engineered nanostructures.

© 2009 OSA

OCIS Codes
(240.5420) Optics at surfaces : Polaritons
(240.6680) Optics at surfaces : Surface plasmons
(300.6330) Spectroscopy : Spectroscopy, inelastic scattering including Raman
(240.3695) Optics at surfaces : Linear and nonlinear light scattering from surfaces
(180.4243) Microscopy : Near-field microscopy
(180.5655) Microscopy : Raman microscopy

ToC Category:

Original Manuscript: September 18, 2009
Revised Manuscript: October 26, 2009
Manuscript Accepted: November 9, 2009
Published: November 23, 2009

Alexander M. Gigler, Andreas J. Huber, Michael Bauer, Alexander Ziegler, Rainer Hillenbrand, and Robert W. Stark, "Nanoscale residual stress-field mapping
around nanoindents in SiC
by IR s-SNOM and confocal Raman microscopy," Opt. Express 17, 22351-22357 (2009)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. D. Peter, M. Dalmer, H. Kruwinus, A. Lechner, L. Archer, E. Gaulhofer, A. M. Gigler, R. W. Stark, and W. Bensch, “Measurement of the Mechanical Stability of Semiconductor Line Structures in Relevant Media,” ECS Trans. 16, 13–21 (2009). [CrossRef]
  2. I. Neizvestnyi and V. Gridchin, “The use of stressed silicon in MOS transistors and CMOS structures,” Russ. Microelectron. 38(2), 71–86 (2009). [CrossRef]
  3. J. Baliga, Silicon Carbide Power Devices (World Scientific, Singapore, 2005).
  4. H. Harima, T. Hosoda, and S. Nakashima, “Temperature measurement in a silicon carbide light emitting diode by Raman scattering,” J. Electron. Mater. 28(3), 141–143 (1999). [CrossRef]
  5. A. J. Wilkinson, G. Meaden, and D. J. Dingley, “High-resolution elastic strain measurement from electron backscatter diffraction patterns: new levels of sensitivity,” Ultramicroscopy 106(4-5), 307–313 (2006). [CrossRef] [PubMed]
  6. A. J. Wilkinson, G. Meaden, and D. J. Dingley, “Mapping strains at the nanoscale using electron back scatter diffraction,” Superlattices Microstruct. 45(4-5), 285–294 (2009). [CrossRef]
  7. M. Bauer, A. M. Gigler, A. J. Huber, R. Hillenbrand, and R. W. Stark, “Temperature depending Raman line-shift in silicon carbide,” J. Raman Spectrosc. (to be published)), doi:. [CrossRef] [PubMed]
  8. M. Bauer, A. M. Gigler, C. Richter, and R. W. Stark, “Visualizing stress in silicon micro cantilevers using scanning confocal Raman spectroscopy,” Microelectron. Eng. 85(5-6), 1443–1446 (2008). [CrossRef]
  9. T. Beechem, S. Graham, S. P. Kearney, L. M. Phinney, and J. R. Serrano, “Invited Article: Simultaneous mapping of temperature and stress in microdevices using micro-Raman spectroscopy,” Rev. Sci. Instrum. 78(6), 061301 (2007). [CrossRef] [PubMed]
  10. D. Olego, M. Cardona, and P. Vogl, “Pressure-Dependence of the Optical Phonons and Transverse Effective Charge in 3C-SiC,” Phys. Rev. B 25(6), 3878–3888 (1982). [CrossRef]
  11. H. F. Poulsen, J. A. Wert, J. Neuefeind, V. Honkimäki, and M. Daymond, “Measuring strain distributions in amorphous materials,” Nat. Mater. 4(1), 33–36 (2005). [CrossRef] [PubMed]
  12. A. Debernardi, C. Ulrich, K. Syassen, and M. Cardona, “Raman linewidths of optical phonons in 3C-SiC under pressure: First-principles calculations and experimental results,” Phys. Rev. B 59(10), 6774–6783 (1999). [CrossRef]
  13. T. B. Wei, Q. Hu, R. F. Duan, J. X. Wang, Y. P. Zeng, J. M. Li, Y. Yang, and Y. L. Liu, “Mechanical Deformation Behavior of Nonpolar GaN Thick Films by Berkovich Nanoindentation,” Nanoscale Res. Lett. 4(7), 753–757 (2009). [CrossRef] [PubMed]
  14. J. C. Burton, L. Sun, M. Pophristic, S. J. Lukacs, F. H. Long, Z. C. Feng, and I. T. Ferguson, “Spatial characterization of doped SiC wafers by Raman spectroscopy,” J. Appl. Phys. 84(11), 6268–6273 (1998). [CrossRef]
  15. S. Nakashima and H. Harima, “Raman investigation of SiC polytypes,” Phys. Status Solidi A 162(1), 39–64 (1997). [CrossRef]
  16. K. Mizoguchi and S. Nakashima, “Determination of Crystallographic Orientations in Silicon Films by Raman-Microprobe Polarization Measurements,” J. Appl. Phys. 65(7), 2583–2590 (1989). [CrossRef]
  17. I. DeWolf, “Micro-Raman spectroscopy to study local mechanical stress in silicon integrated circuits,” Semicond. Sci. Technol. 11(2), 139–154 (1996). [CrossRef]
  18. S. M. Hu, “Stress-Related Problems in Silicon Technology,” J. Appl. Phys. 70(6), R53–R80 (1991). [CrossRef]
  19. B. V. Kamenev, H. Grebel, L. Tsybeskov, T. I. Kamins, R. S. Williams, J. M. Baribeau, and D. J. Lockwood, “Polarized Raman scattering and localized embedded strain in self-organized Si/Ge nanostructures,” Appl. Phys. Lett. 83(24), 5035–5037 (2003). [CrossRef]
  20. J. Liu and Y. K. Vohra, “Raman modes of 6H polytype of silicon carbide to ultrahigh pressures: A comparison with silicon and diamond,” Phys. Rev. Lett. 72(26), 4105–4108 (1994). [CrossRef] [PubMed]
  21. J. Liu and Y. K. Vohra, “Raman modes of 6H polytype of silicon carbide to ultrahigh pressures - Reply,” Phys. Rev. Lett. 77, 1661 (1996). [CrossRef] [PubMed]
  22. L. G. Cançado, A. Hartschuh, and L. Novotny, “Tip-enhanced Raman spectroscopy of carbon nanotubes,” J. Raman Spectrosc. 40(10), 1420–1426 (2009). [CrossRef]
  23. A. Hartschuh, E. J. Sánchez, X. S. Xie, and L. Novotny, “High-resolution near-field Raman microscopy of single-walled carbon nanotubes,” Phys. Rev. Lett. 90(9), 095503 (2003). [CrossRef] [PubMed]
  24. D. Cialla, T. Deckert-Gaudig, C. Budich, M. Laue, R. Moller, D. Naumann, V. Deckert, and J. Popp, “Raman to the limit: tip-enhanced Raman spectroscopic investigations of a single tobacco mosaic virus,” J. Raman Spectrosc. 40(3), 240–243 (2009). [CrossRef]
  25. T. Deckert-Gaudig, F. Erver, and V. Deckert, “Transparent silver microcrystals: synthesis and application for nanoscale analysis,” Langmuir 25(11), 6032–6034 (2009). [CrossRef] [PubMed]
  26. T. Deckert-Gaudig, E. Bailo, and V. Deckert, “Perspectives for spatially resolved molecular spectroscopy - Raman on the nanometer scale,” J. Biophoton. 1(5), 377–389 (2008). [CrossRef]
  27. N. Hayazawa, M. Motohashi, Y. Saito, H. Ishitobi, A. Ono, T. Ichimura, P. Verma, and S. Kawata, “Visualization of localized strain of a crystalline thin layer at the nanoscale by tip-enhanced Raman spectroscopy and microscopy,” J. Raman Spectrosc. 38(6), 684–696 (2007). [CrossRef]
  28. A. Tarun, N. Hayazawa, M. Motohashi, and S. Kawata, “Highly efficient tip-enhanced Raman spectroscopy and microscopy of strained silicon,” Rev. Sci. Instrum. 79(1), 013706 (2008). [CrossRef] [PubMed]
  29. F. Keilmann and R. Hillenbrand, “Near-field microscopy by elastic light scattering from a tip,” Philos. Trans. R. Soc. Lond. A 362(1817), 787–805 (2004). [CrossRef]
  30. R. Hillenbrand, T. Taubner, and F. Keilmann, “Phonon-enhanced light matter interaction at the nanometre scale,” Nature 418(6894), 159–162 (2002). [CrossRef] [PubMed]
  31. S. C. Kehr, M. Cebula, O. Mieth, T. Härtling, J. Seidel, S. Grafström, L. M. Eng, S. Winnerl, D. Stehr, and M. Helm, “Anisotropy contrast in phonon-enhanced apertureless near-field microscopy using a free-electron laser,” Phys. Rev. Lett. 100(25), 256403 (2008). [CrossRef] [PubMed]
  32. A. Huber, N. Ocelic, T. Taubner, and R. Hillenbrand, “Nanoscale resolved infrared probing of crystal structure and of plasmon-phonon coupling,” Nano Lett. 6(4), 774–778 (2006). [CrossRef] [PubMed]
  33. N. Ocelic and R. Hillenbrand, “Subwavelength-scale tailoring of surface phonon polaritons by focused ion-beam implantation,” Nat. Mater. 3(9), 606–609 (2004). [CrossRef] [PubMed]
  34. A. J. Huber, A. Ziegler, T. Köck, and R. Hillenbrand, “Infrared nanoscopy of strained semiconductors,” Nat. Nanotechnol. 4(3), 153–157 (2009). [CrossRef] [PubMed]
  35. N. Ocelic, A. Huber, and R. Hillenbrand, “Pseudoheterodyne detection for background-free near-field spectroscopy,” Appl. Phys. Lett. 89(10), 101124 (2006). [CrossRef]
  36. U. Schmidt, W. Ibach, J. Muller, K. Weishaupt, and O. Hollricher, “Raman spectral imaging - A nondestructive, high resolution analysis technique for local stress measurements in silicon,” Vib. Spectrosc. 42(1), 93–97 (2006). [CrossRef]
  37. T. Wermelinger, C. Borgia, C. Solenthaler, and R. Spolenak, “3-D Raman spectroscopy measurements of the symmetry of residual stress fields in plastically deformed sapphire crystals,” Acta Mater. 55(14), 4657–4665 (2007). [CrossRef]
  38. G. D. Quinn and R. C. Bradt, “On the Vickers indentation fracture toughness test,” J. Am. Ceram. Soc. 90(3), 673–680 (2007). [CrossRef]
  39. M. Becker, H. Scheel, S. Christiansen, and H. P. Strunk, “Grain orientation, texture, and internal stress optically evaluated by micro-Raman spectroscopy,” J. Appl. Phys. 101(6), 063531 (2007). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited