OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 17, Iss. 25 — Dec. 7, 2009
  • pp: 22358–22365

Preservation of the carrier envelope phase during cross-polarized wave generation

K. Osvay, L. Canova, C. Durfee, A. P. Kovács, Á. Börzsönyi, O. Albert, and R. Lopez Martens  »View Author Affiliations

Optics Express, Vol. 17, Issue 25, pp. 22358-22365 (2009)

View Full Text Article

Enhanced HTML    Acrobat PDF (227 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The preservation of carrier envelope phase (CEP) during Cross-Polarized Wave Generation (XPWG) is demonstrated through two independent experiments based on the spatially and spectrally resolved interference fringes formed by the XPW beam and its fundamental. In a first measurement, we found that the vertical fringe position on the spatial detector was maintained over many consecutive laser shots, implying practically no change in relative CEP between the XPW and the fundamental. In a second experiment, we measured the change in relative CEP between the XPW and fundamental beam by systematically varying the amount of material dispersion inside the XPW arm of the interferometer. The recorded rate of relative phase change was in excellent agreement with the theoretical value.

© 2009 OSA

OCIS Codes
(120.5050) Instrumentation, measurement, and metrology : Phase measurement
(190.7110) Nonlinear optics : Ultrafast nonlinear optics
(320.5520) Ultrafast optics : Pulse compression

ToC Category:
Ultrafast Optics

Original Manuscript: September 22, 2009
Revised Manuscript: October 30, 2009
Manuscript Accepted: November 14, 2009
Published: November 23, 2009

K. Osvay, L. Canova, C. Durfee, A. P. Kovács, Á. Börzsönyi, O. Albert, and R. Lopez Martens, "Preservation of the carrier envelope phase
during cross-polarized wave generation," Opt. Express 17, 22358-22365 (2009)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. G. D. Tsakiris, K. Eidmann, J. Meyer-Ter-Vehn, and F. Krausz, “Route to intense attosecond pulses,” N. J. Phys. 8, 19 (2006). [CrossRef]
  2. U. Morgner, R. Ell, G. Metzler, T. R. Schibli, F. X. Kärtner, J. G. Fujimoto, H. A. Haus, and E. P. Ippen, “Nonlinear optics with phase-controlled pulses in the sub-two-cycle regime,” Phys. Rev. Lett. 86(24), 5462–5465 (2001). [CrossRef] [PubMed]
  3. A. Baltuska, M. Uiberacker, E. Goulielmakis, R. Kienberger, V. S. Yakovlev, T. Udem, T. W. Hänsch, and F. Krausz, “Phase-Controlled Amplification of Few-Cycle Laser Pulses,” IEEE J. Sel. Top. Quantum Electron. 9(4), 972–989 (2003). [CrossRef]
  4. A. Jullien, O. Albert, F. Burgy, G. Hamoniaux, J.-P. Rousseau, J.-P. Chambaret, F. Augé-Rochereau, G. Chériaux, J. Etchepare, N. Minkovski, and S. M. Saltiel, “10(-10) temporal contrast for femtosecond ultraintense lasers by cross-polarized wave generation,” Opt. Lett. 30(8), 920–922 (2005). [CrossRef] [PubMed]
  5. V. Chvykov, P. Rousseau, S. Reed, G. Kalinchenko, and V. Yanovsky, “Generation of 1011 contrast 50 TW laser pulses,” Opt. Lett. 31(10), 1456–1458 (2006). [CrossRef] [PubMed]
  6. L. Antonucci, J. P. Rousseau, A. Jullien, B. Mercier, V. Laude, and G. Cheriaux, “14-fs high temporal quality injector for ultra-high intensity laser,” Opt. Commun. 282(7), 1374–1379 (2009). [CrossRef]
  7. N. Minkovski, G. I. Petrov, S. M. Saltiel, O. Albert, and J. Etchepare, “Nonlinear polarization rotation and orthogonal polarization generation experienced in a single-beam configuration,” J. Opt. Soc. Am. B 21(9), 1659 (2004). [CrossRef]
  8. A. Jullien, L. Canova, O. Albert, D. Boschetto, L. Antonucci, Y. H. Cha, J. P. Rousseau, P. Chaudet, G. Cheriaux, J. Etchepare, S. Kourtev, N. Minkovski, and S. M. Saltiel, “Spectral broadening and pulse duration, reduction during cross-polarized wave generation: influence of the quadratic spectral phase,” Appl. Phys. B 87(4), 595–601 (2007). [CrossRef]
  9. L. Canova, O. Albert, N. Forget, B. Mercier, S. Kourtev, N. Minkovski, S. M. Saltiel, and R. Lopez-Martens, “Influence of spectral phase on cross-polarized wave generation with short femtosecond pulses,” Appl. Phys. B 93(2-3), 443–453 (2008). [CrossRef]
  10. L. Canova, S. Kourtev, N. Minkovski, A. Jullien, R. Lopez-Martens, O. Albert, and S. M. Saltiel, “Efficient generation of cross-polarized femtosecond pulses in cubic crystals with holographic cut orientation,” Appl. Phys. Lett. 92, 231102 (2008). [CrossRef]
  11. A. P. Kovács, K. Osvay, Z. Bor, and R. Szipöcs, “Group-delay measurement on laser mirrors by spectrally resolved white-light interferometry,” Opt. Lett. 20(7), 788–790 (1995). [CrossRef] [PubMed]
  12. C. Sainz, J. E. Calatroni, and G. Tribillon, “Refractrometry of Liquid Samples With White-Light Interferometry,” Meas. Sci. Technol. 1(4), 356–361 (1990). [CrossRef]
  13. D. Meshulach, D. Yelin, and Y. Siberberg, “White light dispersion measurements by one- and two-dimensional spectral interference,” IEEE J. Quantum Electron. 33(11), 1969–1974 (1997). [CrossRef]
  14. A. Börzsönyi, Z. Heiner, M. P. Kalashnikov, A. P. Kovács, and K. Osvay, “Dispersion measurement of inert gases and gas mixtures at 800 nm,” Appl. Opt. 47(27), 4856–4863 (2008). [CrossRef] [PubMed]
  15. A. Börzsönyi, A. P. Kovács, M. Görbe, and K. Osvay, “Advances and limitations of phase dispersion measurement by spectrally and spatially resolved interferometry,” Opt. Commun. 281(11), 3051–3061 (2008). [CrossRef]
  16. K. Osvay, A. Börzsönyi, Zs. Heiner, and M. P. Kalashnikov, “Measurement of Pressure Dependent Nonlinear Refractive Index of Inert Gases,” CLEO 2009, Baltimore, USA, paper CMU7.
  17. D. E. Adams, T. A. Planchon, J. A. Squier, and C. G. Durfee, “Spatio-Temporal Characterization of Nonlinear Propagation of Femtosecond Pulses,” CLEO 2009, Baltimore, USA, paper CThDD5.
  18. D. Meshulach, D. Yelin, and Y. Silberberg, “Real-time spatial-spectral interference measurements of ultrashort optical pulses,” J. Opt. Soc. Am. B 14(8), 2095–2098 (1997). [CrossRef]
  19. B. Parys, J-F. Allard, D. Morris, C. Pipin, D. Houde, and A. Cornet, “Assessment of the spectral interference method applied to the stretching measurement of diffused laser pulses,” J. Opt. A: Pure Appl. Opt . 7, 249–254 (2005) 249. [CrossRef]
  20. P. Bowlan, P. Gabolde, A. Shreenath, K. McGresham, R. Trebino, and S. Akturk, “Crossed-beam spectral interferometry: a simple, high-spectral-resolution method for completely characterizing complex ultrashort pulses in real time,” Opt. Express 14(24), 11892–11900 (2006). [CrossRef] [PubMed]
  21. K. Osvay, M. Görbe, C. Grebing, and G. Steinmeyer, “Bandwidth-independent linear method for detection of the carrier-envelope offset phase,” Opt. Lett. 32(21), 3095–3097 (2007). [CrossRef] [PubMed]
  22. F. X. Kaertner, ed., “Few-cycle laser pulses and its applications,” Topics in Applied Physics, Vol. 95, Springer, Berlin, 2004.
  23. A. Trisorio, L. Canova, and R. Lopez Martens, “Hybrid Prism/Chirped Mirror Compressor for Multi-mJ, kHz, Sub-30 fs”, CEP Stabilized Ti:Sa Laser,” CLEO 2008, San José, USA, paper JWA60.
  24. I. H. Malitson, “Interspecimen comparison of the refractive index of fused silica,” J. Opt. Soc. Am. 55(10), 1205–1209 (1965). [CrossRef]
  25. M. P. Kalashnikov, E. Risse, H. Schönnagel, and W. Sandner, “Double chirped-pulse-amplification laser: a way to clean pulses temporally,” Opt. Lett. 30(8), 923–925 (2005). [CrossRef] [PubMed]
  26. D. Herrmann, L. Veisz, R. Tautz, F. Tavella, K. Schmid, V. Pervak, and F. Krausz, “Generation of sub-three-cycle, 16 TW light pulses by using noncollinear optical parametric chirped-pulse amplification,” Opt. Lett. 34(16), 2459–2461 (2009). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited