OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 17, Iss. 25 — Dec. 7, 2009
  • pp: 22401–22416

Numerical and experimental investigation of dissipative solitons in passively mode-locked fiber lasers with large net-normal-dispersion and high nonlinearity

Xueming Liu  »View Author Affiliations


Optics Express, Vol. 17, Issue 25, pp. 22401-22416 (2009)
http://dx.doi.org/10.1364/OE.17.022401


View Full Text Article

Enhanced HTML    Acrobat PDF (485 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Dissipative soliton evolution in passively mode-locked fiber lasers with large net-normal-dispersion and high nonlinearity is investigated numerically and confirmed experimentally. I have proposed a theoretical model including the nonlinear polarization evolution and spectral filtering effect. This model successfully predicts the pulse behaviors of the proposed laser, such as the multi-soliton evolution, quasi-rectangle-spectrum profile, trapezoid-spectrum profile, and unstable state. Numerical results show that, in contrast to the typical net- or all-normal-dispersion fiber lasers with the slight variation of the pulse breathing, the breathing ratios of the pulse duration and spectral width of our laser are more than three and two during the intra-cavity propagation, respectively. The nonlinear polarization rotation mechanism together with spectral filtering effect plays the key roles on the pulse evolution. The experimental observations confirm the theoretical predictions.

© 2009 OSA

OCIS Codes
(140.4050) Lasers and laser optics : Mode-locked lasers
(190.5530) Nonlinear optics : Pulse propagation and temporal solitons
(060.3510) Fiber optics and optical communications : Lasers, fiber

ToC Category:
Lasers and Laser Optics

History
Original Manuscript: October 5, 2009
Revised Manuscript: November 6, 2009
Manuscript Accepted: November 15, 2009
Published: November 23, 2009

Citation
Xueming Liu, "Numerical and experimental investigation of dissipative solitons in passively mode-locked fiber lasers with large net-normal-dispersion and high nonlinearity," Opt. Express 17, 22401-22416 (2009)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-17-25-22401


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. G. Martel, C. Chédot, A. Hideur, and P. Grelu, “Numerical Maps for Fiber Lasers Mode Locked with Nonlinear Polarization Evolution:Comparison with Semi-Analytical Models,” Fiber Integr. Opt. 27(5), 320–340 (2008). [CrossRef]
  2. A. Ruehl, D. Wandt, U. Morgner, and D. Kracht, “Normal dispersive ultrafast fiber oscillators,” IEEE J. Sel. Top. Quantum Electron. 15(1), 170–181 (2009). [CrossRef]
  3. H. Zhang, D. Y. Tang, L. M. Zhao, X. Wu, and H. Tam, “Dissipative vector solitons in a dispersion- managed cavity fiber laser with net positive cavity dispersion,” Opt. Express 17(2), 455–460 (2009). [CrossRef]
  4. A. Haboucha, A. Komarov, H. Leblond, F. Sanchez, and G. Martel, “Mechanism of multiple pulse formation in the normal dispersion regime of passively mode-locked fiber ring lasers,” Opt. Fiber Technol. 14(4), 262–267 (2008). [CrossRef]
  5. M. A. Abdelalim, Y. Logvin, D. A. Khalil, and H. Anis, “Steady and oscillating multiple dissipative solitons in normal-dispersion mode-locked Yb-doped fiber laser,” Opt. Express 17(15), 13128–13139 (2009). [CrossRef] [PubMed]
  6. F. O. Ilday, F. W. Wise, and T. Sosnowski, “High-energy femtosecond stretched-pulse fiber laser with a nonlinear optical loop mirror,” Opt. Lett. 27(17), 1531–1533 (2002). [CrossRef] [PubMed]
  7. M. Olivier and M. Piché, “Origin of the bound states of pulses in the stretched-pulse fiber laser,” Opt. Express 17(2), 405–418 (2009). [CrossRef] [PubMed]
  8. S. Masuda, S. Niki, and M. Nakazawa, “Environmentally stable, simple passively mode-locked fiber ring laser using a four-port circulator,” Opt. Express 17(8), 6613–6622 (2009). [CrossRef] [PubMed]
  9. B. G. Bale, J. N. Kutz, A. Chong, W. H. Renninger, and F. W. Wise, “Spectral filtering for high-energy mode-locking in normal dispersion fiber lasers,” J. Opt. Soc. Am. B 25(10), 1763–1770 (2008). [CrossRef]
  10. F. W. Wise, A. Chong, and W. Renninger, “High-energy femtosecond fiber lasers based on pulse propagation at normal dispersion,” Laser Photonics Rev. 2(1-2), 58–73 (2008). [CrossRef]
  11. Y. J. Song, M. L. Hu, Q. Liu, J. Li, W. Chen, L. Chai, and Q. Y. Wang, “A mode-locked Yb3+-doped double-clad large-mode-area fiber laser,” Acta Phys. Sin. 57, 5045–5048 (2008).
  12. N. Akhmediev and A. Ankiewicz, “Dissipative Solitons: From Optics to Biology and Medicine,” Lect. Notes Phys. 751, 349 (2008).
  13. W. Chang, A. Ankiewicz, J. M. Soto-Crespo, and N. Akhmediev, “Dissipative soliton resonances in laser models with parameter management,” J. Opt. Soc. Am. B 25(12), 1972–1977 (2008). [CrossRef]
  14. Dissipative Solitons, edited by N. Akhmediev and A. Ankiewicz (Springer, Berlin, 2005).
  15. W. Chang, J. M. Soto-Crespo, A. Ankiewicz, and N. Akhmediev, “Dissipative soliton resonances in the anomalous dispersion regime,” Phys. Rev. A 79(3), 033840 (2009). [CrossRef]
  16. C. Lecaplain, C. Chédot, A. Hideur, B. Ortaç, and J. Limpert, “High-power all-normal-dispersion femtosecond pulse generation from a Yb-doped large-mode-area microstructure fiber laser,” Opt. Lett. 32(18), 2738–2740 (2007). [CrossRef] [PubMed]
  17. A. Cabasse, G. Martel, and J. L. Oudar, “High power dissipative soliton in an Erbium-doped fiber laser mode-locked with a high modulation depth saturable absorber mirror,” Opt. Express 17(12), 9537–9542 (2009). [CrossRef] [PubMed]
  18. A. Cabasse, B. Ortaç, G. Martel, A. Hideur, and J. Limpert, “Dissipative solitons in a passively mode-locked Er-doped fiber with strong normal dispersion,” Opt. Express 16(23), 19322–19329 (2008). [CrossRef] [PubMed]
  19. W. H. Renninger, A. Chong, and F. W. Wise, “Dissipative solitons in normal-dispersion fiber lasers,” Phys. Rev. A 77(2), 023814 (2008). [CrossRef]
  20. K. Kieu, W. H. Renninger, A. Chong, and F. W. Wise, “Sub-100 fs pulses at watt-level powers from a dissipative-soliton fiber laser,” Opt. Lett. 34(5), 593–595 (2009). [CrossRef] [PubMed]
  21. B. Ortaç, M. Baumgartl, J. Limpert, and A. Tünnermann, “Approaching microjoule-level pulse energy with mode-locked femtosecond fiber lasers,” Opt. Lett. 34(10), 1585–1587 (2009). [CrossRef] [PubMed]
  22. V. L. Kalashnikov, E. Podivilov, A. Chernykh, S. Naumov, A. Fernandez, R. Graf, and A. Apolonski, “Approaching the microjoule frontier with femtosecond laser oscillators: theory and comparison with experiment,” N. J. Phys. 7, 217 (2005). [CrossRef]
  23. L. M. Zhao, D. Y. Tang, H. Y. Tam, and C. Lu, “Pulse breaking recovery in fiber lasers,” Opt. Express 16(16), 12102–12107 (2008). [CrossRef] [PubMed]
  24. P. A. Bélanger, “Stable operation of mode-locked fiber lasers: similariton regime,” Opt. Express 15(17), 11033–11041 (2007). [CrossRef] [PubMed]
  25. J. M. Soto-Crespo, N. Akhmediev, C. Mejia-Cortés, and N. Devine, “Dissipative ring solitons with vorticity,” Opt. Express 17(6), 4236–4250 (2009). [CrossRef] [PubMed]
  26. A. Chong, J. Buckley, W. Renninger, and F. Wise, “All-normal-dispersion femtosecond fiber laser,” Opt. Express 14(21), 10095–10100 (2006). [CrossRef] [PubMed]
  27. G. P. Agrawal, “Amplification of ultrashort solitons in erbium-doped fiber amplifiers,” IEEE Photon. Technol. Lett. 2(12), 875–877 (1990). [CrossRef]
  28. B. Ortaç, O. Schmidt, T. Schreiber, J. Limpert, A. Tünnermann, and A. Hideur, “High-energy femtosecond Yb-doped dispersion compensation free fiber laser,” Opt. Express 15(17), 10725–10732 (2007). [CrossRef] [PubMed]
  29. L. M. Zhao, D. Y. Tang, H. Zhang, T. H. Cheng, H. Y. Tam, and C. Lu, “Dynamics of gain-guided solitons in an all-normal-dispersion fiber laser,” Opt. Lett. 32(13), 1806–1808 (2007).L. Zhao, D. Y. Tang, X. Wu, H. Zhang, C. Lu, and H. Tam, “Dynamics of gain-guided solitons in a dispersion-managed fiber laser with large normal cavity dispersion,” Opt. Commun. 281(12), 3324–3326 (2008). [CrossRef] [PubMed]
  30. J. W. Lou, M. Currie, and F. K. Fatemi, “Experimental measurements of solitary pulse characteristics from an all-normal-dispersion Yb-doped fiber laser,” Opt. Express 15(8), 4960–4965 (2007). [CrossRef] [PubMed]
  31. K. Kieu and F. W. Wise, “All-fiber normal-dispersion femtosecond laser,” Opt. Express 16(15), 11453–11458 (2008). [CrossRef] [PubMed]
  32. A. Chong, W. H. Renninger, and F. W. Wise, “Properties of normal-dispersion femtosecond fiber lasers,” J. Opt. Soc. Am. B 25(2), 140–148 (2008). [CrossRef]
  33. X. M. Liu, “Dissipative soliton evolution in ultra-large normal-cavity-dispersion fiber lasers,” Opt. Express 17(12), 9549–9557 (2009). [CrossRef] [PubMed]
  34. X. M. Liu, L. Wang, X. Li, H. Sun, A. Lin, K. Lu, Y. Wang, and W. Zhao, “Multistability evolution and hysteresis phenomena of dissipative solitons in a passively mode-locked fiber laser with large normal cavity dispersion,” Opt. Express 17(10), 8506–8512 (2009). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited