OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 17, Iss. 25 — Dec. 7, 2009
  • pp: 22442–22451

Non-trivial scaling of self-phase modulation and three-photon absorption in III–V photonic crystal waveguides

Chad Husko, Sylvain Combrié, Quynh Vy Tran, Fabrice Raineri, Chee Wei Wong, and Alfredo De Rossi  »View Author Affiliations

Optics Express, Vol. 17, Issue 25, pp. 22442-22451 (2009)

View Full Text Article

Enhanced HTML    Acrobat PDF (938 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We investigate the nonlinear response of photonic crystal waveguides with suppressed two-photon absorption. A moderate decrease of the group velocity (~c/6 to c/15, a factor of 2.5) results in a dramatic (×30) enhancement of three-photon absorption well beyond the expected scaling, ∝1/v g 3. This non-trivial scaling of the effective nonlinear coefficients results from pulse compression, which further enhances the optical field beyond that of purely slow-group velocity interactions. These observations are enabled in mm-long slow-light photonic crystal waveguides owing to the strong anomalous group-velocity dispersion and positive chirp. Our numerical physical model matches measurements remarkably.

© 2009 Optical Society of America

OCIS Codes
(190.3270) Nonlinear optics : Kerr effect
(190.4180) Nonlinear optics : Multiphoton processes
(190.4400) Nonlinear optics : Nonlinear optics, materials
(130.5296) Integrated optics : Photonic crystal waveguides
(250.4390) Optoelectronics : Nonlinear optics, integrated optics

ToC Category:
Photonic Crystals

Original Manuscript: July 31, 2009
Revised Manuscript: September 19, 2009
Manuscript Accepted: November 13, 2009
Published: November 23, 2009

Chad Husko, Sylvain Combrié, Quynh V. Tran, Fabrice Raineri, Chee Wei Wong, and Alfredo De Rossi, "Non-trivial scaling of self-phase modulation and three-photon absorption in III-V photonic crystal waveguides," Opt. Express 17, 22442-22451 (2009)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. S. Harris, "Electromagnetically Induced Transparency," Phys. Today 50, 36 (1997). [CrossRef]
  2. L. Hau, S. Harris, Z. Dutton, and C. Behroozi, "Light speed reduction to 17 metres per second in an ultracold atomic gas," Nature 397, 594 (1999). [CrossRef]
  3. J. Longdell, E. Fraval, M. Sellars, and N. Manson, "Stopped light with storage times greater than one second using electromagnetically induced transparency in a solid," Phys. Rev. Lett. 95, 63601 (2005). [CrossRef]
  4. L. Deng and M. Payne, "Inhibiting the onset of the three-photon destructive interference in ultraslow propagationenhanced four-wave mixing with dual induced transparency," Phys. Rev. Lett. 91, 243902 (2003). [CrossRef] [PubMed]
  5. X. Yang, M. Yu, D.-L. Kwong, and C. W. Wong, "All-optical analogue to electromagnetically induced transparency in multiple coupled photonic crystal cavities," Phys. Rev. Lett. 102, 173902 (2009). [CrossRef] [PubMed]
  6. T. Baba, "Slow light in photonic crystals," Nat. Photonics 2, 465 (2008). [CrossRef]
  7. T. F. Krauss, "Why do we need slow light?" Nat. Photonics 2, 448 (2008). [CrossRef]
  8. Y. Vlasov, M. O’Boyle, H. Hamann, and S. McNab, "Active control of slow light on a chip with photonic crystal waveguides," Nature 438, 65 (2005). [CrossRef] [PubMed]
  9. M. A. Foster, R. Salem, D. F. Geraghty, A. C. Turner-Foster, M. Lipson, and A. L. Gaeta, "Silicon-chip-based ultrafast optical oscilloscope," Nature 456, 81 (2008). [CrossRef] [PubMed]
  10. M. Pelusi, F. Luan, T. Vo, M. Lamont, S. Madden, D. A. Bulla, D.-Y. Choi, B. Luther-Davies, and B. Eggleton, "Photonic-chip-based radio-frequency spectrum analyser with terahertz bandwidth," Nat. Photonics 3, 139 (2009). [CrossRef]
  11. J. Topolancik, B. Ilic, and F. Vollmer, "Experimental Observation of Strong Photon Localization in Disordered Photonic Crystal Waveguides," Phys. Rev. Lett. 99, 253901 (2007). [CrossRef]
  12. R. Engelen, D. Mori, T. Baba, and L. Kuipers, "Two regimes of slow-light losses revealed by adiabatic reduction of group velocity," Phys. Rev. Let. 101, 103901 (2008). [CrossRef]
  13. M. Soljačić and J. D. Joannopoulos, "Enhancement of nonlinear effects using photonic crystals," Nat. Materials 3, 211 (2004). [CrossRef] [PubMed]
  14. J. F. McMillan, M. Yu, D.-L. Kwong, and C.W. Wong, "Observations of spontaneous Raman scattering in silicon slow-light photonic crystal waveguides," Appl. Phys. Lett. 93, 251105 (2008). [CrossRef]
  15. Y. Okawachi, M. Bigelow, J. E. Sharping, Z. Zhu, A. Schweinsberg, D. J. Gauthier, R.W. Boyd, and A. L. Gaeta, "Tunable All-Optical Delays via Brillouin Slow Light in an Optical Fiber," Phys. Rev. Lett. 94, 153902 (2005). [CrossRef]
  16. G. A. Siviloglou, S. Suntsov, R. El-Ganainy, R. Iwanow, G. I. Stegeman, D. N. Christodoulides, R. Morandotti, D. Modotto, A. Locatelli, C. D. Angelis, F. Pozzi, C. R. Stanley, and M. Sorel, "Enhanced third-order nonlinear effects in optical AlGaAs nanowires," Opt. Express 14, 9327 (2006). [CrossRef] [PubMed]
  17. C. Monat, B. Corcoran, M. Ebnali-Heidari, C. Grillet, B. Eggleton, T. White, L. O’Faolain, and T. F. Krauss, "Slow light enhancement of nonlinear effects in silicon engineered photonic crystal waveguides," Opt. Express 17, 2944 (2009). [CrossRef]
  18. K. Inoue, H. Oda, N. Ikeda, and K. Asakawa, "Enhanced third-order nonlinear effects in slow-light photoniccrystal slab waveguides of line defect," Opt. Express 17, 7206 (2009). [CrossRef] [PubMed]
  19. T. Carmon and K. J. Vahala, "Visible continuous emission from a silica microphotonic device by third-harmonic generation," Nat. Physics 3, 430 (2007). [CrossRef] [PubMed]
  20. P. P. Markowicz, H. Tiryaki, H. Pudavar, P. N. Prasad, N. N. Lepeshkin, and R.W. Boyd, "Dramatic Enhancement of Third-Harmonic Generation in Three-Dimensional Photonic Crystals," Phys. Rev. Lett. 92, 083903 (2004). [CrossRef]
  21. B. Corcoran, C. Monat, C. Grillet, D. Moss, B. Eggleton, T. White, L. O’Faolain, and T. F. Krauss, "Green light emission in silicon through slow-light enhanced third-harmonic generation in photonic-crystal waveguides," Nat. Photonics 3, 206 (2009). [CrossRef] [PubMed]
  22. S. Combri’e, Q. V. Tran, E.Weidner, A. De Rossi, S. Cassette, P. Hamel, Y. Jaouen, R. Gabet, and A. Talneau, "Investigation of group delay, loss and disorder in a Photonic CrystalWaveguide by Low-Coherence Reflectometry," Appl. Phys. Lett. 90, 231104 (2007). [CrossRef]
  23. G. Stegeman, "Material figures of merit and implications to all-optical waveguide switching," Proc. SPIE 1852, 75 (1993). [CrossRef]
  24. J. Kang, A. Villeneuve, M. Sheik-Bahae, G. Stegeman, K. Al-Hemyari, J. S. Aitchison, and C. N.  Ironside, "Limitation due to three-photon absorption on the useful spectral range for nonlinear optics in AlGaAs below half band gap," Appl. Phys. Lett. 65, 147 (1994). [CrossRef]
  25. A. Villeneuve, C. C. Yang, G. I. Stegeman, C.-H. Lin, and H.-H. Lin, "Ultrafast all-optical switching in semiconductor nonlinear directional couplers at half the band gap," Appl. Phys. Lett. 62, 2465 (1993). [CrossRef]
  26. J. Aitchison, D. C. Hutchings, J. U. Kang, G. I. Stegeman, and A. Villeneuve, "The Nonlinear Optical Properties of AlGaAs at the Half Band Gap," IEEE J. Quantum Electron. 33, 341 (1997). [CrossRef]
  27. S. Combrié, S. Bansropun, M. Lecomte, O. Parillaud, S. Cassette, H. Benisty, and J. Nagle, "Optimization of an inductively coupled plasma etching process of GaInP/GaAs based material for photonic band gap applications," J. Vac. Sci. Technol. B 23, 1521 (2005). [CrossRef]
  28. Q. Tran, S. Combri’e, P. Colman, and A. De Rossi, "Photonic crystal membrane waveguides with low insertion losses, " Appl. Phys. Lett. 95, 061105 (2009). [CrossRef]
  29. E. Weidner, S. Combrie, A. De Rossi, Q. Tran, and S. Cassette, "Nonlinear and bistable behavior of an ultrahigh-Q GaAs photonic crystal nanocavity," Appl. Phys. Lett. 90, 101118 (2007). [CrossRef]
  30. A. Parini, P. Hamel, A. De Rossi, S. Combri’e, Q. Tran, Y. Gottesman, R. Gabet, A. Talneau, Y. Jaoun, and G. Vadal, "Time-Wavelength Reflectance Maps of Photonic Crystal Waveguides: A New View on Disorder-Induced Scattering," IEEE J. Lightwave Tech. 26, 3794 (2008). [CrossRef]
  31. S. G. Johnson and J. D. Joannopoulos, "Block-iterative frequency-domain methods for Maxwell’s equations in a planewave basis," Opt. Express 8, 173 (2001). [CrossRef]
  32. Rigorous intensity autocorrelation measurements of the pulse were carried out at each wavelength and current setting. [CrossRef] [PubMed]
  33. E. Kuramochi, M. Notomi, S. Hughes, A. Shinya, T. Watanabe, and L. Ramunno, "Disorder-induced scattering loss of line-defect waveguides in photonic crystal slabs," Phys. Rev. B 72, 161318 (2005).
  34. B.S. Wherrett, "Scaling rules for multiphoton interband absorption in semiconductors," J. Opt. Soc. Am. B 1, 67 (1984). [CrossRef]
  35. S. Huges, L. Ramunno, J. F. Young, and J. Sipe, "Extrinsic Optical Scattering Loss in Photonic Crystal Waveguides: Role of Fabrication Disorder and Photon Group Velocity," Phys. Rev. Lett. 94, 033903 (2005). [CrossRef]
  36. S. Combri’e, E. Weidner, A. De Rossi, S. Bansropun, S. Cassette, A. Talneau, and H. Benisty, "Detailed analysis by Fabry-Perot method of slab photonic crystal line-defect waveguides and cavities in aluminium-free material system," Opt. Express 14, 7353 (2006). [CrossRef]
  37. A group-index dependent effective area for the slow-light PhCWG is included in the fifth-order nonlinear scaling, with A5e f f defined as: A5e f f = V5e f f a = _(_n2 ∑ |E|2dV)3 _n2 ∑ |E|6dV _1/2. [CrossRef] [PubMed]
  38. J. I. Dadap, N. C. Panoiu, X. Chen, I. Hsieh, X. Liu, C. Chou, E. Dulkeith, S. J. McNab, F. Xia, W. M. J. Green, L. Sekaric, Y. A. Vlasov, and R. M. Osgood, Jr, "Nonlinear-optical phase modification in dispersion-engineered Si photonic wires," Opt. Express 16, 1280 (2008).
  39. W. Ding, C. Benton, A. Gorbach, W. Wadsworth, J. Knight, D. Skryabin, M. Gnan, M. Sorrel, and R. M. De La Rue, "Solitons and spectral broadening in long silicon-on-insulator photonic wires," Opt. Express 16, 3310 (2008). [CrossRef] [PubMed]
  40. G. P. Agrawal, Nonlinear Fiber Optics (Academic, 2007). [CrossRef] [PubMed]
  41. N. A. R. Bhat and J. Sipe, "Optical pulse propagation in nonlinear photonic crystals," Phys. Rev. E 64, 056604 (2001).
  42. The vector definition is applicable to materials with large indices of refraction and tight confinement such as PhCWGs: A3e f f = V3e f f a = (_n2 ∑ |E|2dV)2 _n2 ∑3(|E·E|2+2|E|4dV. The scalar definition is the typical: Ae f f = Ve f fa = (_n2 ∑ |E|2dV)2_n2 ∑ |E|4dV. [CrossRef]
  43. M. Sheik-Bahae, D. Hagan, and E. W. Van Stryland, "Dispersion and band-gap scaling of the electronic Kerreffect in solids associated with two-photon absorption," Phys. Rev. Lett. 65, 96 (1990).
  44. The often cited linear loss definition, Le f f (linear) = (1−e−〈L)/〈, is not applicable in our current experimentto estimate max. We derive a more appropriate definition for when three-photon absorption, as opposed to linear loss, is the dominant loss term: Le f fNL(ThPA) = 1Io√〈〈3 arctan_ 2L3e f f Io√〈〈31+e−〈L√1+2〈3I2o L3e f f _, to be detailed elsewhere. [CrossRef] [PubMed]
  45. S. Kubo, D. Mori, and T. Baba, "Low-group-velocity and low-dispersion slow light in photonic crystal waveguides," Opt. Lett. 32, 2981 (2007).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1. Fig. 2. Fig. 3.
Fig. 4.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited