OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 17, Iss. 25 — Dec. 7, 2009
  • pp: 22474–22483

Cryogenic spectroscopy of ultra-low density colloidal lead chalcogenide quantum dots on chip-scale optical cavities towards single quantum dot near-infrared cavity QED

Ranojoy Bose, Jie Gao, James F. McMillan, Alex D. Williams, and Chee Wei Wong  »View Author Affiliations


Optics Express, Vol. 17, Issue 25, pp. 22474-22483 (2009)
http://dx.doi.org/10.1364/OE.17.022474


View Full Text Article

Acrobat PDF (1389 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We present evidence of cavity quantum electrodynamics from a sparse density of strongly quantum-confined Pb-chalcogenide nanocrystals (between 1 and 10) approaching single-dot levels on moderately high-Q mesoscopic silicon optical cavities. Operating at important near-infrared (1500-nm) wavelengths, large enhancements are observed from devices and strong modifications of the QD emission are achieved. Saturation spectroscopy of coupled QDs is observed at 77K, highlighting the modified nanocrystal dynamics for quantum information processing.

© 2009 OSA

OCIS Codes
(000.0000) General : General
(000.2700) General : General science

ToC Category:
Quantum Optics

History
Original Manuscript: August 19, 2009
Revised Manuscript: October 16, 2009
Manuscript Accepted: November 4, 2009
Published: November 23, 2009

Citation
Ranojoy Bose, Jie Gao, James F. McMillan, Alex D. Williams, and Chee Wei Wong, "Cryogenic spectroscopy of ultra-low density colloidal lead chalcogenide quantum dots on chip-scale optical cavities towards single quantum dot near-infrared cavity QED," Opt. Express 17, 22474-22483 (2009)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-17-25-22474


Sort:  Author  |  Year  |  Journal  |  Reset

References

  1. H. Mabuchi and A. C. Doherty, “Cavity quantum electrodynamics: coherence in context,” Science 298(5597), 1372–1377 (2002). [CrossRef]
  2. G. Khitrova, H. M. Gibbs, M. Kira, S. W. Koch, and A. Scherer, “Vacuum Rabi splitting in semiconductors,” Nat. Phys. 2(2), 81–90 (2006). [CrossRef]
  3. K. Srinivasan and O. Painter, “Linear and nonlinear optical spectroscopy of a strongly coupled microdisk-quantum dot system,” Nature 450(7171), 862–865 (2007). [CrossRef]
  4. Y.-F. Xiao, J. Gao, X.-B. Zou, J. F. McMillan, X. Yang, Y.-L. Chen, Z.-F. Han, G.-C. Guo, and C. W. Wong, “Coupled quantum electrodynamics in photonic crystal cavities towards controlled phase gate operations,” N. J. Phys. 10(12), 123013 (2008). [CrossRef]
  5. M. Pelton, C. Santori, J. Vucković, B. Zhang, G. S. Solomon, J. Plant, and Y. Yamamoto, “Efficient source of single photons: a single quantum dot in a micropost microcavity,” Phys. Rev. Lett. 89(23), 233602 (2002). [CrossRef]
  6. S. Strauf, N. G. Stoltz, M. T. Rakher, L. A. Coldren, P. M. Petroff, and D. Bouwmeester, “High-frequency single-photon source with polarization control,” Nat. Photonics 1(12), 704–708 (2007). [CrossRef]
  7. C. Santori, D. Fattal, J. Vucković, G. S. Solomon, and Y. Yamamoto, “Indistinguishable photons from a single-photon device,” Nature 419(6907), 594–597 (2002). [CrossRef]
  8. F. W. Sun and C. W. Wong, “Indistinguishability of independent single photons,” Phys. Rev. A 79(1), 013824 (2009). [CrossRef]
  9. A. Faraon, I. Fushman, D. Englund, N. Stoltz, P. Petroff, and J. Vučković, “Coherent generation of nonclassical light on a chip via photon-induced tunneling and blockade,” Nat. Phys. 4(11), 859–863 (2008). [CrossRef]
  10. K. Hennessy, A. Badolato, M. Winger, D. Gerace, M. Atatüre, S. Gulde, S. Fält, E. L. Hu, and A. Imamoğlu, “Quantum nature of a strongly coupled single quantum dot-cavity system,” Nature 445(7130), 896–899 (2007). [CrossRef]
  11. J. P. Reithmaier, G. Sęk, A. Löffler, C. Hofmann, S. Kuhn, S. Reitzenstein, L. V. Keldysh, V. D. Kulakovskii, T. L. Reinecke, and A. Forchel, “Strong coupling in a single quantum dot-semiconductor microcavity system,” Nature 432(7014), 197–200 (2004). [CrossRef]
  12. M. V. Dutt, L. Childress, L. Jiang, E. Togan, J. Maze, F. Jelezko, A. S. Zibrov, P. R. Hemmer, and M. D. Lukin, “Quantum register based on individual electronic and nuclear spin qubits in diamond,” Science 316(5829), 1312–1316 (2007). [CrossRef]
  13. Y. Shen, T. M. Sweeney, and H. Wang, “Zero-phonon linewidth of single nitrogen vacancy centers in diamond nanocrystals,” Phys. Rev. B 77(3), 033201 (2008). [CrossRef]
  14. S. Kako, C. Santori, K. Hoshino, S. Götzinger, Y. Yamamoto, and Y. Arakawa, “A gallium nitride single-photon source operating at 200 K,” Nat. Mater. 5(11), 887–892 (2006). [CrossRef]
  15. C. B. Poitras, M. Lipson, M. A. Hahn, H. Du, and T. D. Krauss, “Photoluminescence enhancement of colloidal quantum dots embedded in a monolithic microcavity,” Appl. Phys. Lett. 82(23), 4032 (2003). [CrossRef]
  16. I. Fushman, D. Englund, and J. Vučković, “Coupling of PbS quantum dots to photonic crystal cavities at room temperature,” Appl. Phys. Lett. 87(24), 241102 (2005). [CrossRef]
  17. R. Bose, X. Yang, R. Chatterjee, J. Gao, and C. W. Wong, “Weak coupling interactions of colloidal lead sulphide nanocrystals with silicon photonic crystal nanocavities near 1.55 μm at room temperature,” Appl. Phys. Lett. 90(11), 111117 (2007). [CrossRef]
  18. Z. Wu, Z. Mi, P. Bhattacharya, T. Zhu, and J. Xu, “Enhanced spontaneous emission at 1.55 μm from colloidal PbSe quantum dots in a Si photonic crystal microcavity,” Appl. Phys. Lett. 90(17), 171105 (2007). [CrossRef]
  19. R. Bose, D. V. Talapin, X. Yang, R. J. Harniman, P. T. Nguyen, and C. W. Wong, “Interaction of infilitrated colloidal PbS nanocrystals with high Q/V silicon photonic bandgap nanocavities for near-infrared enhanced spontaneous emissions,” Proc. SPIE 6005, 600509 (2005).
  20. A. G. Pattantyus-Abraham, H. Qiao, J. Shan, K. A. Abel, T.-S. Wang, F. C. J. M. van Veggel, and J. F. Young, “Site-selective optical coupling of PbSe nanocrystals to Si-based photonic crystal microcavities,” Nano Lett. 9(8), 2849–2854 (2009). [CrossRef]
  21. S. Vignolini, F. Riboli, F. Intonti, M. Belotti, M. Gurioli, Y. Chen, M. Colocci, L. C. Andreani, and D. S. Wiersma, “Local nanofluidic light sources in silicon photonic crystal microcavities,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 78(4), 045603 (2008). [CrossRef]
  22. A. I. Akimov, “Al. L. Efros, A. A. Onushchenko, “Quantum size effect in semiconductor nanocrystals,” Solid State Commun. 56, 921 (1985). [CrossRef]
  23. L. E. Brus, “Electron-electron and electron-hole interactions in small semiconductor crystallites: The size dependence of the lowest excited excitonic state,” J. Chem. Phys. 80(9), 4403 (1984). [CrossRef]
  24. F. W. Wise, “Lead salt quantum dots: the limit of strong quantum confinement,” Acc. Chem. Res. 33(11), 773–780 (2000). [CrossRef]
  25. J. Warner, E. Thomsen, A. R. Watt, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Time-resolved photoluminescence spectroscopy of ligand-capped PbS nanocrystals,” Nanotechology 16(2), 175–179 (2005). [CrossRef]
  26. S. W. Clark, J. M. Harbold, and F. W. Wise, “Resonant energy transfer in PbS quantum dots,” J. Phys. Chem. C 111(20), 7302–7305 (2007). [CrossRef]
  27. L. Cademartiri, J. Bertolotti, R. Sapienza, D. S. Wiersma, G. von Freymann, and G. A. Ozin, “Multigram scale, solventless, and diffusion-controlled route to highly monodisperse PbS nanocrystals,” J. Phys. Chem. B 110(2), 671–673 (2006). [CrossRef]
  28. R. Bose, R. J. F. McMillan, J. Gao, C. J. Chen, D. V. Talapin, C. B. Murray, K. M. Rickey, and C. W. Wong, “Temperature-tuning of near-infrared monodisperse quantum dots at 1.5 μm for controllable Förster energy transfer,” Nano Lett. 8(7), 2006–2011 (2008). [CrossRef]
  29. E. M. Purcell, “Spontaneous emission probabilities at radio frequencies,” Phys. Rev. 69, 681 (1946). [CrossRef]
  30. T. Tanabe, M. Notomi, E. Kuramochi, A. Shinya, and H. Taniyama, “Trapping and delaying photons for one nanosecond in an ultrasmall high-Q photonic-crystal nanocavity,” Nat. Photonics 1(1), 49–52 (2007). [CrossRef]
  31. S. Noda, M. Fujita, and T. Asano, “Spontaneous-emission control by photonic crystals and nanocavities,” Nat. Photonics 1(8), 449–458 (2007). [CrossRef]
  32. A. Farjadpour, D. Roundy, A. Rodriguez, M. Ibanescu, P. Bermel, J. D. Joannopoulos, S. G. Johnson, and G. W. Burr, “Improving accuracy by subpixel smoothing in the finite-difference time domain,” Opt. Lett. 31(20), 2972–2974 (2006). [CrossRef]
  33. S. Kocaman, R. Chatterjee, N. C. Panoiu, J. F. McMillan, M. B. Yu, R. M. Osgood, D. L. Kwong, and C. W. Wong, “Observations of zero-order bandgaps in negative-index photonic crystal superlattices at the near-infrared,” Phys. Rev. Lett. 102, 203905 (2009). [CrossRef]
  34. M. W. McCutcheon, G. W. Rieger, I. W. Cheung, J. F. Young, D. Dalacu, S. Frederick, P. J. Poole, G. C. Aers, and R. L. Williams, “Resonant scattering and second-harmonic spectroscopy of planar photonic crystal nanocavities,” Appl. Phys. Lett. 87(22), 221110 (2005). [CrossRef]
  35. P. B. Deotare, M. W. McCutcheon, I. W. Frank, M. Khan, and M. Loncar, “High quality factor photonic crystal nanobeam cavities,” Appl. Phys. Lett. 94(12), 121106 (2009). [CrossRef]
  36. C. B. Murray, S. Sun, W. Gaschler, H. Doyle, T. A. Betley, and C. R. Kagan, “Colloidal synthesis of nanocrystals and nanocrystal superlattices,” IBM J. Res. Dev. 45, 47 (2001).
  37. M. A. Hines and G. D. Scholes, “Colloidal PbS nanocrystals with size-tunable near-infrared emission: observation of post-synthesis self-narrowing of the particle size distribution,” Adv. Mater. 15(21), 1844–1849 (2003). [CrossRef]
  38. D. V. Talapin and C. B. Murray, “PbSe nanocrystal solids for n- and p-channel thin film field-effect transistors,” Science 310(5745), 86–89 (2005). [CrossRef]
  39. J. M. Pietryga, K. K. Zhuravlev, M. Whitehead, V. I. Klimov, and R. D. Schaller, “Evidence for barrierless auger recombination in PbSe nanocrystals: a pressure-dependent study of transient optical absorption,” Phys. Rev. Lett. 101(21), 217401 (2008). [CrossRef]
  40. J. C. Johnson, K. A. Gerth, Q. Song, J. E. Murphy, A. J. Nozik, and G. D. Scholes, “Ultrafast exciton fine structure relaxation dynamics in lead chalcogenide nanocrystals,” Nano Lett. 8(5), 1374–1381 (2008). [CrossRef]
  41. P. Michler, A. Imamoğlu, M. D. Mason, P. J. Carson, G. F. Strouse, and S. K. Buratto, “Quantum correlation among photons from a single quantum dot at room temperature,” Nature 406(6799), 968–970 (2000). [CrossRef]
  42. X. Brokmann, G. Messin, P. Desbiolles, E. Giaocobino, M. Dahan, and J. P. Hermier, “Colloidal CdSe/ZnS quantum dots as single-photon sources,” N. J. Phys. 6, 99 (2004). [CrossRef]
  43. N. Le Thomas, U. Woggon, O. Schöps, M. V. Artemyev, M. Kazes, and U. Banin, “Cavity QED with semiconductor nanocrystals,” Nano Lett. 6(3), 557–561 (2006). [CrossRef]
  44. G. Allan and C. Delerue, “Confinement effects in PbSe quantum wells and nanocrystals,” Phys. Rev. B 70(24), 245321 (2004). [CrossRef]
  45. J. M. An, A. Franceschetti, and A. Zunger, “The excitonic exchange splitting and radiative lifetime in PbSe quantum dots,” Nano Lett. 7(7), 2129–2135 (2007). [CrossRef]
  46. J. J. Peterson and T. D. Krauss, “Fluorescence spectroscopy of single lead sulfide quantum dots,” Nano Lett. 6(3), 510–514 (2006). [CrossRef]
  47. L. Cademartiri, E. Montanari, G. Calestani, A. Migliori, A. Guagliardi, and G. A. Ozin, “Size-dependent extinction coefficients of PbS quantum dots,” J. Am. Chem. Soc. 128(31), 10337–10346 (2006). [CrossRef]
  48. A. Badolato, K. Hennessy, M. Atatüre, J. Dreiser, E. Hu, P. M. Petroff, and A. Imamoğlu, “Deterministic coupling of single quantum dots to single nanocavity modes,” Science 308(5725), 1158–1161 (2005). [CrossRef]
  49. L. Turyanska, A. Patane, M. Henini, B. Hennequin, and N. R. Thomas, “Temperature dependence of the photoluminescence emission from thiol-capped PbS quantum dots,” Appl. Phys. Lett. 90(10), 101913 (2007). [CrossRef]
  50. A. Olkhovets, R.-C. Hsu, A. Lipovskii, and F. W. Wise, “Size-dependent variation of the energy gap in lead-salt quantum dots,” Phys. Rev. Lett. 81(16), 3539–3542 (1998). [CrossRef]
  51. G. T. Reed, and A. P. Knights, Silicon Photonics: An introduction (Wiley, 2004)
  52. A. Auffèves, J.-M. Gérard, and J.-P. Poizat, “Pure emitter dephasing: a resource for advanced solid-state single-photon sources,” Phys. Rev. A 79(5), 053838 (2009). [CrossRef]
  53. I. Kang and F. W. Wise, “Electron structure and optical properties of PbS and PbSe quantum dots,” J. Opt. Soc. Am. B 14(7), 1632 (1997). [CrossRef]
  54. G. Allan and C. Delerue, “Confinement effects in PbSe quantum wells and nanocrystals,” Phys. Rev. B 70(24), 245321 (2004). [CrossRef]
  55. J. M. Gérard and B. Gayral, “Strong Purcell effect for InAs quantum boxes in three-dimensional solid-state microcavities,” J. Lightwave Technol. 17(11), 2089–2095 (1999). [CrossRef]
  56. B. Mahler, P. Spinicelli, S. Buil, X. Quelin, J.-P. Hermier, and B. Dubertret, “Towards non-blinking colloidal quantum dots,” Nat. Mater. 7(8), 659–664 (2008). [CrossRef]
  57. V. Fomenko and D. J. Nesbitt, “Solution control of radiative and nonradiative lifetimes: a novel contribution to quantum dot blinking suppression,” Nano Lett. 8(1), 287–293 (2008). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited