OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 17, Iss. 25 — Dec. 7, 2009
  • pp: 22553–22565

Radio-frequency waveform generator with time-multiplexing capabilities based on multi-wavelength pulse compression

Víctor Torres-Company and Lawrence R. Chen  »View Author Affiliations


Optics Express, Vol. 17, Issue 25, pp. 22553-22565 (2009)
http://dx.doi.org/10.1364/OE.17.022553


View Full Text Article

Enhanced HTML    Acrobat PDF (435 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We demonstrate a new photonically assisted reconfigurable radio-frequency waveform generator. The setup is based on phase modulating a multi-wavelength pulse source and subsequent compression in a dispersive medium. Under the appropriate conditions, we show that the photodetected electrical signal is broadband and coherent. Specifically, we show that this system allows for the synthesis of a reconfigurable finite-impulse-response filter where the number of filter taps is given by the number of wavelengths available from the multi-wavelength source and the reconfiguration is determined simply by their power and wavelength separation. We also show that this technique allows for time-multiplexing the synthesized waveforms, thus leading to an effective switching speed fixed by the clock rate. In particular, we show transitions between synthesized waveforms with a frequency content > 60 GHz in periods shorter than 100 ps.

© 2009 OSA

OCIS Codes
(060.0060) Fiber optics and optical communications : Fiber optics and optical communications
(070.1170) Fourier optics and signal processing : Analog optical signal processing
(320.7080) Ultrafast optics : Ultrafast devices
(060.5625) Fiber optics and optical communications : Radio frequency photonics

ToC Category:
Fiber Optics and Optical Communications

History
Original Manuscript: September 21, 2009
Revised Manuscript: November 5, 2009
Manuscript Accepted: November 5, 2009
Published: November 24, 2009

Citation
Víctor Torres-Company and Lawrence R. Chen, "Radio-frequency waveform generator with time-multiplexing capabilities based on multi-wavelength pulse compression," Opt. Express 17, 22553-22565 (2009)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-17-25-22553


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. Y. Liu, S.-G. Park, and A. M. Weiner, “Terahertz waveform synthesis via optical pulse shaping,” IEEE J. Sel. Top. Quantum Electron. 2(3), 709–719 (1996). [CrossRef]
  2. J. D. McKinney, D. E. Leaird, and A. M. Weiner, “Millimeter-wave arbitrary waveform generation with a direct space-to-time pulse shaper,” Opt. Lett. 27(15), 1345–1347 (2002). [CrossRef] [PubMed]
  3. T. Yilmaz, C. M. DePriest, T. Turpin, J. H. Abeles, and P. J. Delfyett., “Toward a photonic arbitrary waveform generator using a modelocked external cavity semiconductor laser,” IEEE Photon. Technol. Lett. 14(11), 1608–1610 (2002). [CrossRef]
  4. J. Chou, Y. Han, and B. Jalali, “Adaptive RF-photonic arbitrary waveform generator,” IEEE Photon. Technol. Lett. 15(4), 581–583 (2003). [CrossRef]
  5. J. Azaña, N. K. Berger, B. Levit, and B. Fischer, “Reconfigurable generation of high-repetition rate pulse sequences based on time-domain phase-only filtering,” Opt. Lett. 30(23), 3228–3230 (2005). [CrossRef] [PubMed]
  6. V. Torres-Company, J. Lancis, and P. Andrés, “Arbitrary waveform generator based on all-incoherent pulse shaping,” IEEE Photon. Technol. Lett. 18(24), 2626–2628 (2006). [CrossRef]
  7. D. Miyamoto, K. Mandai, T. Jurokawa, S. Takeda, T. Shioda, and H. Tsuda, “Waveform-controllable optical pulse generation using an optical pulse synthesizer,” IEEE Photon. Technol. Lett. 18(5), 721–723 (2006). [CrossRef]
  8. J. Yao, F. Zeng, and Q. Wang, “Photonic generation of ultrawideband signals,” J. Lightwave Technol. 25(11), 3219–3235 (2007). [CrossRef]
  9. Y. Dai and J. Yao, “Arbitrary phase-modulated RF signal generation based on optical pulse position modulation,” J. Lightwave Technol. 26(19), 3329–3336 (2008). [CrossRef]
  10. R. E. Saperstein and Y. Fainman, “Information processing with longitudinal spectral decomposition of ultrafast pulses,” Appl. Opt. 47(4), A21–A31 (2008). [CrossRef] [PubMed]
  11. V. Torres-Company, J. Lancis, P. Andrés, and L. R. Chen, “Reconfigurable RF-waveform generator based on incoherent filter design,” J. Lightwave Technol. 26(15), 2476–2483 (2008). [CrossRef]
  12. V. Torres-Company, J. Lancis, P. Andrés, and L. R. Chen, “20 GHz arbitrary radio-frequency waveform generator based on incoherent pulse shaping,” Opt. Express 16(26), 21564–21569 (2008), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-16-26-21564 . [CrossRef] [PubMed]
  13. S. Anzai, Y. Komai, M. Mieno, N. Wada, T. Yoda, T. Miyazaki, and K. Kodate, “Terahertz optical clock generation with tunable repetition rate and central wavelength using variable-bandwidth spectrum shaper,” Opt. Express 17(7), 4932–4937 (2009), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-17-7-4932 . [CrossRef] [PubMed]
  14. A. J. Seeds, “Photonic techniques for microwave frequency synthesis,” IEEE LEOS Annual meeting 1, 72–73 (2000).
  15. R. A. Minasian, “Photonic signal processing of microwave signals,” IEEE Trans. Microw. Theory Tech. 54(2), 832–846 (2006). [CrossRef]
  16. J. Capmany and D. Novak, “Microwave photonics combines two worlds,” Nat. Photonics 1(6), 319–330 (2007). [CrossRef]
  17. J. Yao, “Microwave photonics,” J. Lightwave Technol. 27(3), 314–335 (2009). [CrossRef]
  18. D. E. Leaird, Z. Jiang, and A. M. Weiner, “Experimental investigation of security issues in OCDMA: a code-switching scheme,” Electron. Lett. 41(14), 817–819 (2005). [CrossRef]
  19. S. Ozharar, F. Quinlan, S. Gee, and P. J. Delfyett, “Demonstration of endless phase modulation for arbitrary waveform generation,” IEEE Photon. Technol. Lett. 17(12), 2739–2741 (2005). [CrossRef]
  20. C.-B. Huang, D. E. Leaird, and A. M. Weiner, “Time-multiplexed photonically enabled radio-frequency arbitrary waveform generation with 100 ps transitions,” Opt. Lett. 32(22), 3242–3244 (2007). [CrossRef] [PubMed]
  21. R. P. Scott, N. K. Fontaine, C. Yang, D. J. Geisler, K. Okamoto, J. P. Heritage, and S. J. B. Yoo, “Rapid updating of optical arbitrary waveforms via time-domain multiplexing,” Opt. Lett. 33(10), 1068–1070 (2008). [CrossRef] [PubMed]
  22. J. Caraquitena and J. Martí, “Dynamic spectral line-by-line pulse shaping by frequency comb shifting,” Opt. Lett. 34(13), 2084–2086 (2009). [CrossRef] [PubMed]
  23. J. van Howe, J. Hansryd, and C. Xu, “Multiwavelength pulse generator using time-lens compression,” Opt. Lett. 29(13), 1470–1472 (2004). [CrossRef] [PubMed]
  24. T. Kobayashi, H. Yao, K. Amano, Y. Fukushima, A. Morimoto, and T. Sueta, “Optical pulse compression using high-frequency electrooptic phase modulation,” IEEE J. Quantum Electron. 24(2), 382–387 (1988). [CrossRef]
  25. T. Otsuji, M. Yaita, T. Nagatsuma, and E. Sano, “10-80 Gb/s highly exctinctive electrooptic pulse pattern generation,” IEEE J. Sel. Top. Quantum Electron. 2(3), 643–649 (1996). [CrossRef]
  26. T. Komukai, T. Yamamoto, and S. Kawanishi, “Optical pulse generator using phase modulator and linearly chirped fiber Bragg gratings,” IEEE Photon. Technol. Lett. 17(8), 1746–1748 (2005). [CrossRef]
  27. S. Yang and X. Bao, “Generating a high-extinction-ratio pulse from a phase-modulated optical signal with a dispersion-imbalanced nonlinear loop mirror,” Opt. Lett. 31(8), 1032–1034 (2006). [CrossRef] [PubMed]
  28. C. Dorrer, “Statistical analysis of incoherent pulse shaping,” Opt. Express 17(5), 3341–3352 (2009), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-17-5-3341 . [CrossRef] [PubMed]
  29. V. Torres-Company, C. R. Fernández-Pousa, and L. R. Chen, “Temporal Lau effect: a multiwavelength self-imaging phenomenon,” Opt. Lett. 34(12), 1885–1887 (2009). [CrossRef] [PubMed]
  30. X. Yi and R. A. Minasian, “Noise mitigation in spectrum sliced microwave photonic signal processors,” J. Lightwave Technol. 24(12), 4959–4965 (2006). [CrossRef]
  31. T. Jannson, “Real-time Fourier transformation in dispersive optical fibers,” Opt. Lett. 8(4), 232–234 (1983). [CrossRef] [PubMed]
  32. M. Nakazawa, T. Hirooka, F. Futami, and S. Watanabe, “Ideal distortion-free transmission using optical Fourier transformation and Fourier transform-limited pulses,” IEEE Photon. Technol. Lett. 16(4), 1059–1061 (2004). [CrossRef]
  33. J. Capmany, B. Ortega, and D. Pastor, “A tutorial on microwave photonic fitlers,” J. Lightwave Technol. 24(1), 201–229 (2006). [CrossRef]
  34. J. Capmany, D. Pastor, and B. Ortega, “New and flexible fiber-optic delay line filters using chirped fibre Bragg gratings and laser arrays,” IEEE Trans. Microw. Theory Tech. 47(7), 1321–1326 (1999). [CrossRef]
  35. S. Sales, J. Capmany, J. Martí, and D. Pastor, “Solutions to the synthesis problem of optical delay line filters,” Opt. Lett. 20(23), 2438–2440 (1995). [CrossRef] [PubMed]
  36. T. A. Cusick, S. Iezekiel, and R. E. Miles; “All-optical microwave filter design employing a genetic algorithm,” IEEE Photon. Technol. Lett. 10(8), 1156–1158 (1998). [CrossRef]
  37. N. K. Fontaine, R. P. Scott, J. Cao, A. Karalar, W. Jiang, K. Okamoto, J. P. Heritage, B. H. Kolner, and S. J. B. Yoo, “32 Phase X 32 amplitude optical arbitrary waveform generation,” Opt. Lett. 32(7), 865–867 (2007). [CrossRef] [PubMed]
  38. Z. Jiang, C.-B. Huang, D. E. Leaird, and A. M. Weiner, “Optical arbitrary waveform processing of more than 100 spectral comb lines,” Nat. Photonics 1(8), 463–467 (2007). [CrossRef]
  39. M. K. Smit, “Past and future of InP-based photonic integration,” IEEE LEOS annual meeting, 51–52 (2008).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited