OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 17, Iss. 25 — Dec. 7, 2009
  • pp: 22566–22570

Above threshold spectral dependence of linewidth enhancement factor, optical duration and linear chirp of quantum dot lasers

Jimyung Kim and Peter J. Delfyett  »View Author Affiliations

Optics Express, Vol. 17, Issue 25, pp. 22566-22570 (2009)

View Full Text Article

Enhanced HTML    Acrobat PDF (153 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The spectral dependence of the linewidth enhancement factor above threshold is experimentally observed from a quantum dot Fabry-Pérot semiconductor laser. The linewidth enhancement factor is found to be reduced when the quantum dot laser operates ~ 10 nm offset to either side of the gain peak. It becomes significantly reduced on the anti-Stokes side as compared to the Stokes side. It is also found that the temporal duration of the optical pulses generated from quantum dot mode-locked lasers is shorter when the laser operates away from the gain peak. In addition, less linear chirp is impressed on the pulse train generated from the anti-Stokes side whereas the pulses generated from the gain peak and Stokes side possess a large linear chirp. These experimental results imply that enhanced performance characteristics of quantum dot lasers can be achieved by operating on the anti-Stokes side, ~ 10 nm away from the gain peak.

© 2009 OSA

OCIS Codes
(140.3520) Lasers and laser optics : Lasers, injection-locked
(140.4050) Lasers and laser optics : Mode-locked lasers
(140.5960) Lasers and laser optics : Semiconductor lasers
(250.5590) Optoelectronics : Quantum-well, -wire and -dot devices

ToC Category:
Lasers and Laser Optics

Original Manuscript: September 22, 2009
Revised Manuscript: November 12, 2009
Manuscript Accepted: November 12, 2009
Published: November 24, 2009

Jimyung Kim and Peter J. Delfyett, "Above threshold spectral dependence of linewidth enhancement factor, optical duration and linear chirp of quantum dot lasers," Opt. Express 17, 22566-22570 (2009)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. R. Dingle, and C. H. Henry, U.S. Patent 3,983,302 (1976).
  2. Y. Arakawa and H. Sakaki, “Multidimensional quantum well laser and temperature dependence of its threshold current,” Appl. Phys. Lett. 40(11), 939–941 (1982). [CrossRef]
  3. O. B. Shchekin and D. G. Deppe, “1.3 μm InAs quantum dot laser with T0=161 K from 0 to 80 °C,” Appl. Phys. Lett. 80(18), 3277–3279 (2002). [CrossRef]
  4. M. Asada, Y. Miyamoto, and Y. Suematsu, “Gain and the Threshold of Three-Dimensional Quantum-Box Lasers,” IEEE J. Quantum Electron. 22(9), 1915–1921 (1986). [CrossRef]
  5. M. Osiński and J. Buus, “Linewidth Broadening Factor in Semiconductor Lasers – An Overview,” IEEE J. Quantum Electron. 23(1), 9–29 (1987). [CrossRef]
  6. A. A. Ukhanov, A. Stintz, P. G. Eliseev, and K. J. Malloy, “Comparison of the carrier induced refractive index, gain, and linewidth enhancement factor in quantum dot and quantum well lasers,” Appl. Phys. Lett. 84(7), 1058–1060 (2004). [CrossRef]
  7. B. Dagens, A. Markus, J. X. Chen, J.-G. Provost, D. Make, O. Le Gouezigou, J. Landreau, A. Fiore, and B. Thedrez, “Giant linewidth enhancement factor and purely frequency modulated emission from quantum dot laser,” Electron. Lett. 41(6), 323–324 (2005). [CrossRef]
  8. A. V. Uskov, E. P. O’Reilly, D. McPeake, N. N. Ledenstov, D. Bimberg, and G. Huyet, “Carrier-induced refractive index in quantum dot structures due to transitions from discrete quantum dot levels to continuum states,” Appl. Phys. Lett. 84(2), 272–274 (2004). [CrossRef]
  9. J. Molina Vázquez, H. H. Nilsson, J.-Z, Zhang, and I. Galbraith, “Linewidth Enhancement Factor of Quantum-Dot Optical Amplifiers,” IEEE J. Quantum Electron. 42(10), 986–993 (2006). [CrossRef]
  10. J. Oksanen and J. Tulkki, “Linewidth enhancement factor and chirp in quantum dot lasers,” J. Appl. Phys. 94(3), 1983–1989 (2003). [CrossRef]
  11. S. Schneider, P. Borri, W. Langbein, U. Woggon, R. L. Sellin, D. Ouyang, and D. Bimberg, “Linewidth Enhancement Factor in InGaAs Quantum-Dot Amplifiers,” IEEE J. Quantum Electron. 40(10), 1423–1429 (2004). [CrossRef]
  12. C. H. Henry, N. A. Olsson, and N. K. Dutta, “Locking Range and Stability of Injection Locked 1.54 μm InGaAsP Semiconductor Lasers,” IEEE J. Quantum Electron. 21(8), 1152–1156 (1985). [CrossRef]
  13. I. Petitbon, P. Gallion, G. Debarge, and C. Chabran, “Locking Bandwidth and Relaxation Oscillations of an Injection-Locked Semiconductor Laser,” IEEE J. Quantum Electron. 24(2), 148–154 (1988). [CrossRef]
  14. G. Liu, X. Jin, and S. L. Chuang, “Measurement of Linewidth Enhancement Factor of Semiconductor Lasers Using an Injection-Locking Technique,” IEEE Photon. Technol. Lett. 13(5), 430–432 (2001). [CrossRef]
  15. L. F. Lester, A. Stintz, H. Li, T. C. Newell, E. A. Pease, B. A. Fuchs, and K. J. Malloy, “Optical Characteristics of 1.24-μm InAs Quantum-Dot Laser Diodes,” IEEE Photon. Technol. Lett. 11(8), 931–933 (1999). [CrossRef]
  16. A. Markus, J. X. Chen, C. Paranthoën, A. Fiore, C. Platz, and O. Gauthier-Lafaye, “Simultaneous two-state lasing in quantum-dot lasers,” Appl. Phys. Lett. 82(12), 1818–1820 (2003). [CrossRef]
  17. P. J. Delfyett, Y. Silberberg, and G. A. Alphonse, “Hot-carrier thermalization induced self-phase modulation in semiconductor travelling wave amplifiers,” Appl. Phys. Lett. 59(1), 10–12 (1991). [CrossRef]
  18. S. Gee, R. Coffie, P. J. Delfyett, G. Alphonse, and J. Connolly, “Intracavity gain and absorption dynamics of hybrid modelocked semiconductor lasers using multiple quantum well saturable absorbers,” Appl. Phys. Lett. 71(18), 2569–2571 (1997). [CrossRef]
  19. J. Kim, M. T. Choi, and P. J. Delfyett, “Pulse generation and compression via ground and excited states from a grating coupled passively mode-locked quantum dot two-section diode laser,” Appl. Phys. Lett. 89(26), 261106 (2006). [CrossRef]
  20. O. E. Martinez, “3000 Times Grating Compressor with Positive Group Velocity Dispersion: Application to Fiber Compensation in 1.3-1.6 μm Region,” IEEE J. Quantum Electron. 23(1), 59–64 (1987). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited