OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 17, Iss. 25 — Dec. 7, 2009
  • pp: 22586–22602

Investigation of electrooptic modulator disruption by microwave-induced transients

Ross T. Schermer, Frank Bucholtz, Carl A. Villarruel, Jesus Gil Gil, Tim D. Andreadis, and Keith J. Williams  »View Author Affiliations


Optics Express, Vol. 17, Issue 25, pp. 22586-22602 (2009)
http://dx.doi.org/10.1364/OE.17.022586


View Full Text Article

Enhanced HTML    Acrobat PDF (616 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

This paper presents a detailed investigation of the physical mechanisms underlying the disruption of a lithium niobate electrooptic modulator by RF pulses. It is shown that short-term modulator disruption is a direct consequence of resistive heating within the metal conductor of the coplanar waveguide electrode, which leads to a thermo-optic optical phase shift in the waveguides of the modulator. Resistive heating is also shown to contribute to permanent modulator damage at higher RF power. These results indicate that short-term RF disruption, and possibly RF damage, can be mitigated through improved thermal management. They also predict that short-term photonic link disruption can be reduced, if not eliminated, by use of a phase modulated photonic link.

© 2009 OSA

OCIS Codes
(060.2360) Fiber optics and optical communications : Fiber optics links and subsystems
(130.3120) Integrated optics : Integrated optics devices
(130.3730) Integrated optics : Lithium niobate
(130.4110) Integrated optics : Modulators

ToC Category:
Integrated Optics

History
Original Manuscript: October 9, 2009
Revised Manuscript: November 14, 2009
Manuscript Accepted: November 15, 2009
Published: November 24, 2009

Citation
Ross T. Schermer, Frank Bucholtz, Carl A. Villarruel, Jesus Gil Gil, Tim D. Andreadis, and Keith J. Williams, "Investigation of electrooptic modulator disruption by microwave-induced transients," Opt. Express 17, 22586-22602 (2009)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-17-25-22586


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. J. Benford, J. Swegle, and E. Schamiloglu, High Power Microwaves, 2nd Ed. (Taylor and Francis, 2007).
  2. “High-Altitude Electromagnetic Pulse Protection for Ground-Based Facilities Performing Critical, Time-Urgent Missions,” MIL-STD-188–125–1, July 17, 1998.
  3. Micronetics - Enon Microwave Inc, “New High Power Limiters” (Enon Microwave 2009). http://www.micronetics.com/products/enon/limiters.html .
  4. Plasma Sciences Corp, “Products” (Plasma Sciences Corp 2009) http://www.plasmasciences.net/Products/products.html
  5. Accurate Automation Corporation, “AAC-TVS Plasma Limiters” (AAC 2006). http://www.accurate-automation.com/w_content/images/f/f6/Plasma_Limiter_Brochure_May_2006.pdf .
  6. R. C. J. Hsu, et al., “All-Dielectric Wireless Receiver,” IEEE/MTT-S International Microwave Symposium, 221–224 (June 2007).
  7. F. Bucholtz, C. A. Villarruel, P. F. Knapp, J. Shue, T. D. Andreadis, R. T. Schermer, J. Gil Gil, and K. J. Williams, “Susceptibility of a Lithium Niobate Modulator to High-Power Microwave Pulses,” Electron. Lett. 45(5), 272–273 (2009). [CrossRef]
  8. G. F. Lipscomb, et al., “Electro-Optic Effect,” in Characterization Techniques and Tabulations for Organic Nonlinear Optical Materials, M. G. Kuzyk and C. W. Dirk, eds., (Marcel Dekker 1998).
  9. C. H. Cox, E. I. Ackerman, G. E. Betts, and J. L. Prince, “Limits on the Performance of RF-Over-Fiber Links and Their Impact on Device Design,” IEEE Trans. Microw. Theory Tech. 54(2), 906–920 (2006). [CrossRef]
  10. G. L. Li and P. K. L. Yu, “Optical Intensity Modulators for Digital and Analog Applications,” J. Lightwave Technol. 21(9), 2010–2030 (2003). [CrossRef]
  11. C. J. G. Kirkby, and C. Florea, “Electro-optic coefficients of LiNbO3,” in Properties of Lithium Niobate, K. K. Wong, ed., (IEE 2002).
  12. G. E. Betts, “LiNbO3 External Modulators and Their Use in High Performance Analog Links,” in RF Photonic Technology in Optical Fiber Links, W. S. C. Chang, ed., (Cambridge 2002).
  13. V. Gopalan, V. Dierolf, and D. A. Scrymgeour, “Defect-Domain Wall Interactions in Trigonal Ferroelectrics,” Annu. Rev. Mater. Res. 37(1), 449–489 (2007). [CrossRef]
  14. R. C. Alferness, “Waveguide Electrooptic Modulators,” IEEE Trans. Microw. Theory Tech. 30(8), 1121–1137 (1982). [CrossRef]
  15. G. Cocorullo and I. Rendina, “Thermo-Optical Modulation at 1.5 μm in Silicon Etalon,” Electron. Lett. 28(1), 83–84 (1992). [CrossRef]
  16. D. M. Pozar, Microwave Engineering, 2nd Ed. (Wiley 1998).
  17. A. A. Zozulya and D. Z. Anderson, “Propagation of an optical beam in a photorefractive medium in the presence of a photogalvanic nonlinearity or an externally applied electric field,” Phys. Rev. A 51(2), 1520–1531 (1995). [CrossRef] [PubMed]
  18. F. Zhao and ., “Temperature Dependence of Light-Induced Scattering in a Ce:Fe:LiNbO3 Photorefractive Crystal,” Opt. Eng. 35(7), 1985–1992 (1996). [CrossRef]
  19. J. P. Holman, Heat Transfer, 9th Ed. (McGraw Hill, 2002).
  20. L. Moretti, M. Iodice, F. G. Della Corte, and I. Rendina, “Temperature Dependence of the Thermo-Optic Coefficient of Lithium Niobate, from 300 to 515 K in the Visible and Infrared Regions,” J. Appl. Phys. 98(3), 036101 (2005). [CrossRef]
  21. J. Wen, “Heat Capacities of Polymers,” in Physical Properties of Polymers Handbook, 2nd Ed., J. E. Mark, ed. (Springer 2007).
  22. M. J. Weber, Handbook of Optical Materials (CRC 2003).
  23. T. H. Lin, S. H. Lee, and D. Craig, “Thermal Conductivity Properties of LiNbO3,” in Properties of Lithium Niobate, K. K. Wong, ed., (IEE 2002).
  24. Y. Yang, “Thermal Conductivity,” in Physical Properties of Polymers Handbook, 2nd Ed., J. E. Mark, ed. (Springer 2007).
  25. R. A. Orwoll, “Densities, Thermal Expansions and Compressibilities,” in Physical Properties of Polymers Handbook, 2nd Ed., J. E. Mark, ed. (Springer 2007).
  26. D. H. Jundt, and G. Foulon, “Crystal Structure of LiNbO3 ” in Properties of Lithium Niobate, K. K. Wong, ed. (IEE 2002).
  27. G. Ghione, et al., “Characterization and Optimization of CPW Electro-Optic Modulators for Microwave and MM-Wave Applications,” Proceedings of the Gallium Arsenide Applications Symposium, 375–380 (1999).
  28. S. K. Korotky, W. Minford, L. Buhl, M. Divino, and R. Alferness, “Mode Size and Method for Estimating the Propagation Constant of a Single-Mode Ti:LiNbO3 Strip Waveguides,” IEEE J. Quantum Electron. 18(10), 1796–1801 (1982). [CrossRef]
  29. E. L. Wooten, K. M. Kissa, A. Yi-Yan, E. J. Murphy, D. A. Lafaw, P. F. Hallemeier, D. Maack, D. V. Attanasio, D. J. Fritz, G. J. McBrien, and D. E. Bossi, “A Review of Lithium Niobate Modulators for Fiber-Optic Communications Systems,” IEEE J. Sel. Top. Quantum Electron. 6(1), 69–82 (2000). [CrossRef]
  30. M. J. LaGasse and S. Thaniyavarn, “Bias-Free High-Dynamic-Range Phase-Modulated Fiber-Optic Link,” IEEE Photon. Technol. Lett. 9(5), 681–683 (1997). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited