OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 17, Iss. 25 — Dec. 7, 2009
  • pp: 22624–22631

Analytical coherency matrix treatment of shear strained fiber Bragg gratings

Mathias S. Müller and Christoph D. A. Schnarr  »View Author Affiliations

Optics Express, Vol. 17, Issue 25, pp. 22624-22631 (2009)

View Full Text Article

Enhanced HTML    Acrobat PDF (167 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Reconstruction of the strain tensor at the position of an embedded fiber Bragg grating sensor has been the goal of recent research. However, ambiguities in the measurand - the polarization resolved reflected intensity spectrum - upon occurrence of shear strain hinder its achievement due to lack of an invertible model. In this work, we derive such a model using coherency matrix properties of unpolarized light. We deduce simplified sensor parameters for the ambiguous shear strain loading case, which possibly lead to a practical inversion of the problem.

© 2009 Optical Society of America

OCIS Codes
(060.0060) Fiber optics and optical communications : Fiber optics and optical communications
(060.2300) Fiber optics and optical communications : Fiber measurements
(060.2370) Fiber optics and optical communications : Fiber optics sensors
(060.2420) Fiber optics and optical communications : Fibers, polarization-maintaining

ToC Category:
Fiber Optics and Optical Communications

Original Manuscript: September 21, 2009
Revised Manuscript: November 4, 2009
Manuscript Accepted: November 4, 2009
Published: November 25, 2009

Mathias S. Müller and Christoph D. A. Schnarr, "Analytical coherency matrix treatment of shear strained fiber Bragg gratings," Opt. Express 17, 22624-22631 (2009)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. K. O. Hill and G. Meltz, "Fiber Bragg Grating Technology Fundamentals and Overview," J. Lightwave Technol. 15, 1263 (1997). [CrossRef]
  2. A. Othonos, "Fiber Bragg gratings," Rev. Sci. Instrum. 68, 4309 (1997). [CrossRef]
  3. T. Mawatari and D. Nelson, "A multi-parameter Bragg grating fiber optic sensor and triaxial strain measurement," Smart Mat. Struct. 17, 19 (2008). [CrossRef]
  4. M. Prabhugoud and K. Peters, "Finite element model for embedded fiber Bragg grating sensor," Smart Mat. Struct. 15, 550 (2006). [CrossRef]
  5. M. S. Muller, L. Hoffmann, A. Sandmair, and A. W. Koch, "Full strain tensor treatment of fiber Bragg grating sensors," J. Quantum Electron. 45, 547 (2009). [CrossRef]
  6. E. Udd, W. Schulz, J. Seim, and E. Haugse, in "Multidimensional strain field measurements using fiber optic grating sensors,"Proc. SPIE 3986, 254-262 (2000). [CrossRef]
  7. A. Barybin and V. Dmitriev, Modern Electrodynamics and Coupled-Mode Theory, (Rinton Press, 2002).
  8. M. S. Muller, H. J. El-Khozondar, T. C. Buck, and A. W. Koch, "Analytical Solution of Four-Mode Coupling in Shear Strain Loaded Fiber-Bragg-Grating Sensors," Opt. Lett. 34, 2622 (2009). [CrossRef] [PubMed]
  9. M. S. Muller, T. C. Buck, H. J. El-Khozondar, and A. W. Koch, "Shear-Strain Influence on Fiber Bragg Grating Measurement Systems," J. Lightwave Technol. 27, 1-7 (2009). [CrossRef]
  10. J. Gil, "Polarimetric characterization of light and media," The European Phys. J. Appl. Phys. 40, 1 (2007). [CrossRef]
  11. T. Erdogan, "Fiber Grating Spectra," J. Lightwave Technol. 15, 1277 (1997). [CrossRef]
  12. T. Narasimhamutry, Photoelastic and Electro-Optic Properties of Crystals, (Plenum Press, 1981).
  13. A. Yariv and P. Yeh, Optical Waves in Crystals, (Wiley, 1984).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1. Fig. 2. Fig. 3.
Fig. 4.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited