OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 17, Iss. 25 — Dec. 7, 2009
  • pp: 22632–22638

A route to sub-diffraction-limited CARS Microscopy

Willem P. Beeker, Petra Groß, Chris J. Lee, Carsten Cleff, Herman L. Offerhaus, Carsten Fallnich, Jennifer L. Herek, and Klaus-Jochen Boller  »View Author Affiliations

Optics Express, Vol. 17, Issue 25, pp. 22632-22638 (2009)

View Full Text Article

Enhanced HTML    Acrobat PDF (174 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We theoretically investigate a scheme to obtain sub-diffraction-limited resolution in coherent anti-Stokes Raman scattering (CARS) microscopy. We find using density matrix calculations that the rise of vibrational (Raman) coherence can be strongly suppressed, and thereby the emission of CARS signals can be significantly reduced, when pre-populating the corresponding vibrational state through an incoherent process. The effectiveness of pre-populating the vibrational state of interest is investigated by considering the excitation of a neighbouring vibrational (control) state through an intense, mid-infrared control laser. We observe that, similar to the processes employed in stimulated emission depletion microscopy, the CARS signal exhibits saturation behaviour if the transition rate between the vibrational and the control state is large. Our approach opens up the possibility of achieving chemically selectivity sub-diffraction-limited spatially resolved imaging.

© 2009 OSA

OCIS Codes
(300.6230) Spectroscopy : Spectroscopy, coherent anti-Stokes Raman scattering
(350.5730) Other areas of optics : Resolution

ToC Category:

Original Manuscript: July 1, 2009
Revised Manuscript: September 17, 2009
Manuscript Accepted: November 9, 2009
Published: November 25, 2009

Virtual Issues
Vol. 5, Iss. 1 Virtual Journal for Biomedical Optics

Willem P. Beeker, Petra Groß, Chris J. Lee, Carsten Cleff, Herman L. Offerhaus, Carsten Fallnich, Jennifer L. Herek, and Klaus-Jochen Boller, "A route to sub-diffraction-limited 
CARS Microscopy," Opt. Express 17, 22632-22638 (2009)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. H. Heinzelmann and D. W. Pohl, “Scanning near-field optical microscopy,” Appl. Phys., A Mater. Sci. Process. 59(2), 89–101 (1994). [CrossRef]
  2. S. W. Hell and J. Wichmann, “Breaking the diffraction resolution limit by stimulated emission: stimulated-emission-depletion fluorescence microscopy,” Opt. Lett. 19(11), 780–782 (1994). [CrossRef] [PubMed]
  3. T. A. Klar, S. Jakobs, M. Dyba, A. Egner, and S. W. Hell, “Fluorescence microscopy with diffraction resolution barrier broken by stimulated emission,” Proc. Natl. Acad. Sci. U.S.A. 97(15), 8206–8210 (2000). [CrossRef] [PubMed]
  4. E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, and H. F. Hess, “Imaging Intracellular Fluorescent Proteins at Nanometer Resolution,” Science 313(5793), 1642–1645 (2006). [CrossRef] [PubMed]
  5. M. J. Rust, M. Bates, and X. Zhuang, “Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM),” Nat. Methods 3(10), 793–796 (2006). [CrossRef] [PubMed]
  6. B. Huang, S. A. Jones, B. Brandenburg, and X. Zhuang, “Whole-cell 3D STORM reveals interactions between cellular structures with nanometer-scale resolution,” Nat. Methods 5(12), 1047–1052 (2008). [CrossRef] [PubMed]
  7. R. Zenobi, “Analytical tools for the nano world,” Anal. Bioanal. Chem. 390(1), 215–221 (2008). [CrossRef] [PubMed]
  8. E. Rittweger, K. Y. Han, S. E. Irvine, C. Eggeling, and S. W. Hell, “STED microscopy reveals crystal colour centres with nanometric resolution,” Nat. Photonics 3(3), 144–147 (2009). [CrossRef]
  9. M. Dyba and S. W. Hell, “Focal Spots of Size λ/23 Open Up Far-Field Fluorescence Microscopy at 33 nm Axial Resolution,” Phys. Rev. Lett. 88(16), 163901 (2002). [CrossRef] [PubMed]
  10. H. Ikagawa, M. Yoneda, M. Iwaki, Z. Isogai, K. Tsujii, R. Yamazaki, T. Kamiya, and M. Zako, “Chemical Toxicity of Indocyanine Green Damages Retinal Pigment Epithelium,” Invest. Ophthalmol. Vis. Sci. 46(7), 2531–2539 (2005). [CrossRef] [PubMed]
  11. H. H. Szeto, P. W. Schiller, K. Zhao, and G. Luo, “Fluorescent dyes alter intracellular targeting and function of cell-penetrating tetrapeptides,” The FASEB Journal, 04–1982fje (2004).
  12. C. J. Daly and J. C. McGrath, “Fluorescent ligands, antibodies, and proteins for the study of receptors,” Pharmacol. Ther. 100(2), 101–118 (2003). [CrossRef] [PubMed]
  13. M. D. Duncan, J. Reintjes, and T. J. Manuccia, “Scanning coherent anti-Stokes Raman microscope,” Opt. Lett. 7(8), 350–352 (1982). [CrossRef] [PubMed]
  14. A. Zumbusch, G. R. Holtom, and X. S. Xie, “Three-Dimensional Vibrational Imaging by Coherent Anti-Stokes Raman Scattering,” Phys. Rev. Lett. 82(20), 4142–4145 (1999). [CrossRef]
  15. C. W. Freudiger, W. Min, B. G. Saar, S. Lu, G. R. Holtom, C. He, J. C. Tsai, J. X. Kang, and X. S. Xie, “Label-Free Biomedical Imaging with High Sensitivity by Stimulated Raman Scattering Microscopy,” Science 322(5909), 1857–1861 (2008). [CrossRef] [PubMed]
  16. C. L. Evans, E. O. Potma, M. Puoris’haag, D. Côté, C. P. Lin, and X. S. Xie, “Chemical imaging of tissue in vivo with video-rate coherent anti-Stokes Raman scattering microscopy,” Proc. Natl. Acad. Sci. U.S.A. 102(46), 16807–16812 (2005). [CrossRef] [PubMed]
  17. A. Nikolaenko, V. V. Krishnamachari, and E. O. Potma, “Interferometric switching of coherent anti-Stokes Raman scattering signals in microscopy,” Physical Review A (Atomic, Molecular, and Optical Physics) 79(1), 013823–013827 (2009). [CrossRef]
  18. P. W. Milonni, and J. H. Eberly, Lasers (John Wiley & Sons, New York, 1988).
  19. Y. R. Shen, The Principles of Nonlinear Optics (John Wiley and Sons, New York, 1984).
  20. H. Okamoto and K. Yoshihara, “Femtosecond time-resolved coherent Raman scattering from β-carotene in solution. Ultrahigh frequency (11 THz) beating phenomenon and sub-picosecond vibrational relaxation,” Chem. Phys. Lett. 177(6), 568–572 (1991). [CrossRef]
  21. R. de Vivie-Riedle and U. Troppmann, “Femtosecond Lasers for Quantum Information Technology,” Chem. Rev. 107(11), 5082–5100 (2007). [CrossRef] [PubMed]
  22. J. B. Asbury, T. Steinel, C. Stromberg, K. J. Gaffney, I. R. Piletic, A. Goun, and M. D. Fayer, “Hydrogen Bond Dynamics Probed with Ultrafast Infrared Heterodyne-Detected Multidimensional Vibrational Stimulated Echoes,” Phys. Rev. Lett. 91(23), 237402 (2003). [CrossRef] [PubMed]
  23. A. J. Wurzer, T. Wilhelm, J. Piel, and E. Riedle, “Comprehensive measurement of the S1 azulene relaxation dynamics and observation of vibrational wavepacket motion,” Chem. Phys. Lett. 299(3-4), 296–302 (1999). [CrossRef]
  24. S. L. McCall and E. L. Hahn, “Self-Induced Transparency by Pulsed Coherent Light,” Phys. Rev. Lett. 18(21), 908–911 (1967). [CrossRef]
  25. B. Hein, K. I. Willig, and S. W. Hell, “Stimulated emission depletion (STED) nanoscopy of a fluorescent protein-labeled organelle inside a living cell,” Proc. Natl. Acad. Sci. U.S.A. 105(38), 14271–14276 (2008). [CrossRef] [PubMed]
  26. C. Ventalon, J. M. Fraser, M. H. Vos, A. Alexandrou, J.-L. Martin, and M. Joffre, “Coherent vibrational climbing in carboxyhemoglobin,” Proc. Natl. Acad. Sci. U.S.A. 101(36), 13216–13220 (2004). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited