OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 17, Iss. 25 — Dec. 7, 2009
  • pp: 22680–22688

A novel reconfigurable optical interconnect architecture using an Opto-VLSI processor and a 4-f imaging system

Mingya Shen, Feng Xiao, and Kamal Alameh  »View Author Affiliations


Optics Express, Vol. 17, Issue 25, pp. 22680-22688 (2009)
http://dx.doi.org/10.1364/OE.17.022680


View Full Text Article

Enhanced HTML    Acrobat PDF (383 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A novel reconfigurable optical interconnect architecture for on-board high-speed data transmission is proposed and experimentally demonstrated. The interconnect architecture is based on the use of an Opto-VLSI processor in conjunction with a 4-f imaging system to achieve reconfigurable chip-to-chip or board-to-board data communications. By reconfiguring the phase hologram of an Opto-VLSI processor, optical data generated by a vertical Cavity Surface Emitting Laser (VCSEL) associated to a chip (or a board) is arbitrarily steered to the photodetector associated to another chip (or another board). Experimental results show that the optical interconnect losses range from 5.8dB to 9.6dB, and that the maximum crosstalk level is below −36dB. The proposed architecture is tested for high-speed data transmission, and measured eye diagrams display good eye opening for data rate of up to 10Gb/s.

© 2009 OSA

OCIS Codes
(060.6718) Fiber optics and optical communications : Switching, circuit

ToC Category:
Fiber Optics and Optical Communications

History
Original Manuscript: October 19, 2009
Revised Manuscript: November 18, 2009
Manuscript Accepted: November 19, 2009
Published: November 25, 2009

Citation
Mingya Shen, Feng Xiao, and Kamal Alameh, "A novel reconfigurable optical interconnect architecture using an Opto-VLSI processor and a 4-f imaging system," Opt. Express 17, 22680-22688 (2009)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-17-25-22680


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. R. Lytel, H. L. Davidson, N. Nettleton, and T. Sze, “Optical interconnections within modern high-performance computing systems,” Proc. IEEE 88(6), 758–763 (2000). [CrossRef]
  2. D. A. B. Miller, “Rationale and challenges for optical interconnects to electronic chips,” Proc. IEEE 88(6), 728–749 (2000). [CrossRef]
  3. E. E. E. Frietman, R. J. Ernst, R. Crosbie, and M. Shimoji, “Prospects for optical interconnects in distributed shared-memory organized MIMD architectures,” J. Supercomput. 14(2), 107–128 (1999). [CrossRef]
  4. A. V. Krishnamoorthy, X. Zheng, J. E. Cunningham, J. Lexau, R. Ho, and O. Torudbakken, “Optical interconnects for present and future high-performance computing systems,” Proceedings of 16th IEEE Symposium on High Performance Interconnects, 175–177 (2008).
  5. D. A. B. Miller, “Physical reasons for optical interconnection,” (Special Issue on Smart Pixels) J. Optoelectron. 11, 155 (1997).
  6. J. A. Kash, “Leveraging optical interconnects in future supercomputers and servers,” Proceedings of the 16th IEEE Symposium on High Performance Interconnects, 190–194 (2008).
  7. T. D. Wilkinson, C. Henderson, D. Gilleyva, B. Robertson, D. O’Brien, and G. Faulkner, “Adaptive optical interconnect using an FLC SLM,” Ferroelectrics 312, 81–85 (2004). [CrossRef]
  8. C. Batten, A. Joshi, J. Orcutt, A. Khilo, B. Moss, C. Holzwarth, M. Popovic, H. Li, H. Smith, J. Hoyt, F. Kartner, R. Ram, V. Stojanovic, and K. Asanovic, “Building manycore processor-to-DRAM networks with monolithic silicon photonics,” Proceedings of 16th IEEE Symposium on High Performance Interconnects, 21–30 (2008).
  9. O. Liboiron-Ladouceur, H. Wang, A. S. Garg, and K. Bergman, “Low-power, transparent optical network interface for high bandwidth off-chip interconnects,” Opt. Express 17(8), 6550–6561 (2009). [CrossRef] [PubMed]
  10. A. K. Kodi and A. Louri, “Multidimensional and reconfigurable optical interconnects for high-performance computing (HPC) systems,” J. Lightwave Technol. 27(21), 4634–4641 (2009). [CrossRef]
  11. R. T. Chen, L. Lin, C. Choi, Y. J. Liu, B. Bihari, L. Wu, S. Tang, R. Wickman, B. Picor, M. K. Hibbsbrenner, J. Bristow, and Y. S. Liu, “Fully embedded board-level guided-wave optoelectronic interconnects,” Proc. IEEE 88(6), 780–793 (2000). [CrossRef]
  12. F. Mederer, R. Jager, H. J. Unold, R. Michalzik, K. J. Ebeling, S. Lehmacher, A. Neyer, and E. Griese, “3- Gb/s data transmission with GaAs VCSEL’s over PCB integrated polymer waveguides,” IEEE Photon. Technol. Lett. 13(9), 1032–1034 (2001). [CrossRef]
  13. B. E. Lemoff, M. E. Ali, G. Panotopoulos, G. M. Flower, B. Madhavan, A. F. J. Levi, and D. W. Dolfi, “MAUI: Enabling fiber-to-the-Processor with parallel multiwavelength optical interconnects,” J. Lightwave Technol. 22(9), 2043–2054 (2004). [CrossRef]
  14. L. A. Buckman Windover, J. N. Simon, S. A. Rosenau, K. Giboney, G. M. Flower, L. W. Mirkarimi, A. Grot, B. Law, C. K. Lin, A. Tandon, R. W. Gruhlke, H. Xia, G. Rankin, and D. W. Dolfi, “Parallel optical interconnects beyond > 100 Gb/s,” J. Lightwave Technol. 22(9), 2055–2063 (2004). [CrossRef]
  15. Y. Li, J. Ai, and J. Popelek, “Board-level 2-D data-capable optical interconnect circuits using polymer fiber-image guides,” Proc. IEEE 88(6), 794–805 (2000). [CrossRef]
  16. T. Maj, A. G. Kirk, D. V. Plant, J. F. Ahadian, C. G. Fonstad, K. L. Lear, K. Tatah, M. S. Robinson, and J. A. Trezza, “Interconnection of a two-dimensional array of vertical-cavity surface-emitting lasers to a receiver array by means of a fiber image guide,” Appl. Opt. 39(5), 683–689 (2000). [CrossRef] [PubMed]
  17. C. J. Henderson, D. G. Leyva, and T. D. Wilkinson, “Free space adaptive optical interconnect at 1.25 Gb/s with beam steering using a ferroelectric liquid-crystal SLM,” J. Lightwave Technol. 24(5), 1989–1997 (2006). [CrossRef]
  18. S. Agelis, and M. Jonsson, “Reconfigurable optical interconnection system supporting concurrent application-specific parallel computing,” Proceedings of the 17th International Symposium on Computer Architecture and High Performance Computing (SBAC-PAD’05), 2005.
  19. F. Wippermann, D. Radtke, M. Amberg, and S. Sinzinger, “Integrated free-space optical interconnect fabricated in planar optics using chirped microlens arrays,” Opt. Express 14(22), 10765–10778 (2006). [CrossRef] [PubMed]
  20. D. V. Plant and A. G. Kirk, “Optical interconnects at the chip and board level: Challenges and solutions,” Proc. IEEE 88(6), 806–818 (2000). [CrossRef]
  21. J. J. Liu, Z. Kalayjian, B. Riely, W. Chang, G. J. Simonis, A. Apsel, and A. Andreou, “Multichannel ultrathin silicon-on-sapphire optical interconnects,” IEEE J. Sel. Top. Quantum Electron. 9(2), 380–386 (2003). [CrossRef]
  22. N. McArdle, M. Naruse, H. Toyoda, Y. Kobayashi, and M. Ishikawa, “Reconfigurable optical interconnections for parallel computing,” Proc. IEEE 88(6), 829–837 (2000). [CrossRef]
  23. M. Aljada, K. E. Alameh, Y. T. Lee, and I. S. Chung, “High-speed (2.5 Gbps) reconfigurable inter-chip optical interconnects using opto-VLSI processors,” Opt. Express 14(15), 6823–6836 (2006). [CrossRef] [PubMed]
  24. J. Stockley, and S. Serati, “Advances in liquid crystal beam steering,” Boulder Nonlinear Systems, www.bnonliner.com, (2004).
  25. K. M. Johnson, D. J. McKnight, and I. Underwood, “Smart spatial light modulators using liquid crystals on silicon,” IEEE J. Quantum Electron. 29(2), 699–714 (1993). [CrossRef]
  26. J. W. Goodman and A. M. Silvestri, “Some effects of Fourier-domain phase quantization,” IBM J. Res. Develop. 14(9), 478–484 (1970). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited