OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 17, Iss. 25 — Dec. 7, 2009
  • pp: 22747–22760

A method to unmix multiple fluorophores in microscopy images with minimal a priori information

S. Schlachter, S. Schwedler, A. Esposito, G.S. Kaminski Schierle, G.D. Moggridge, and C.F. Kaminski  »View Author Affiliations


Optics Express, Vol. 17, Issue 25, pp. 22747-22760 (2009)
http://dx.doi.org/10.1364/OE.17.022747


View Full Text Article

Enhanced HTML    Acrobat PDF (1137 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The ability to quantify the fluorescence signals from multiply labeled biological samples is highly desirable in the life sciences but often difficult, because of spectral overlap between fluorescent species and the presence of autofluorescence. Several so called unmixing algorithms have been developed to address this problem. Here, we present a novel algorithm that combines measurements of lifetime and spectrum to achieve unmixing without a priori information on the spectral properties of the fluorophore labels. The only assumption made is that the lifetimes of the fluorophores differ. Our method combines global analysis for a measurement of lifetime distributions with singular value decomposition to recover individual fluorescence spectra. We demonstrate the technique on simulated datasets and subsequently by an experiment on a biological sample. The method is computationally efficient and straightforward to implement. Applications range from histopathology of complex and multiply labelled samples to functional imaging in live cells.

© 2009 Optical Society of America

OCIS Codes
(170.3650) Medical optics and biotechnology : Lifetime-based sensing
(180.2520) Microscopy : Fluorescence microscopy

ToC Category:
Medical Optics and Biotechnology

History
Original Manuscript: September 2, 2009
Revised Manuscript: November 9, 2009
Manuscript Accepted: November 14, 2009
Published: November 30, 2009

Virtual Issues
Vol. 5, Iss. 1 Virtual Journal for Biomedical Optics

Citation
S. Schlachter, S. Schwedler, A. Esposito, G. S. Kaminski Schierle, G. D. Moggridge, and C. F. Kaminski, "A method to unmix multiple fluorophores in microscopy images with minimal a priori information," Opt. Express 17, 22747-22760 (2009)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-17-25-22747


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. J. H. Frank, A. D. Elder, J. Swartling, A. R. Venkitaraman, A. D. Jeyasekharan, and C. F. Kaminski, "A white light confocal microscope for spectrally resolved multidimensional imaging," J Microsc. 227, 203-215 (2007). [CrossRef] [PubMed]
  2. C. F. Kaminski, R. S. Watt, A. D. Elder, J. H. Frank, and J. Hult, "Supercontinuum radiation for applications in chemical sensing and microscopy," Appl. Phys. B: Lasers and Optics 92(3), 367-378 (2008). [CrossRef]
  3. S. Schlachter, A. D. Elder, A. Esposito, G. S. Kaminski, J. H. Frank, L. K. van Geest, and C. F. Kaminski, "mhFLIM: Resolution of heterogeneous fluorescence decays in widefield lifetime microscopy," Opt. Express 17(3), 1557-1570 (2009). [CrossRef]
  4. A. Esposito, T. Tiffert, J. M. A. Mauritz, S. Schlachter, L. H. Bannister, C. F. Kaminski, and V. L. Lew, "FRET Imaging of Hemoglobin Concentration in Plasmodium falciparum-Infected Red Cells," PLoS ONE 3(11), e3780 (2008). [CrossRef]
  5. T. Zimmermann, J. Rietdorf, and R. Pepperkok, "Spectral imaging and its applications in live cell microscopy," FEBS Lett. 546(1), 87-92 (2003). [CrossRef]
  6. A. D. Elder, A. Domin, G. S. Kaminski Schierle, C. Lindon, J. Pines, A. Esposito, and C. F. Kaminski, "A quantitative protocol for dynamic measurements of protein interactions by Frster resonance energy transfersensitized fluorescence emission," J. Roy. Soc. Interface 6(1), S59-S81 (2009). [CrossRef]
  7. H. Shirakawa and S. Miyazaki, "Blind Spectral Decomposition of Single-Cell Fluorescence by Parallel Factor Analysis," Biophys. J. 86(3), 1739-1752 (2004). [CrossRef]
  8. D. Chorvat, J. Kirchnerova, M. Cagalinec, J. Smolka, A. Mateasik, and A. Chorvatova, "Spectral Unmixing of Flavin Autofluorescence Components in Cardiac Myocytes," Biophys. J. 89(6), L55-L57 (2005). [CrossRef]
  9. R. A. Neher,M. Mitkovski, F. Kirchhoff, E. Neher, F. J. Theis, and A. Zeug, "Blind Source Separation Techniques for the Decomposition of Multiply Labeled Fluorescence Images," Biophys. J. 96(9), 3791-3800 (2009). [CrossRef]
  10. J. R. Lakowicz, Principles of Fluorescence Spectroscopy (Springer, 2006).
  11. P. Verveer, A. Squire, and P. Bastiaens, "Global Analysis of fluorescence lifetime imaging microscopy data," Biophys. J. 78, 2127-2137 (2000). [CrossRef] [PubMed]
  12. G.-J. Kremers, E. B. van Munster, J. Goedhart, and T. W. J. Gadella, "Quantitative Lifetime Unmixing of Multiexponentially Decaying Fluorophores Using Single-Frequency Fluorescence Lifetime Imaging Microscopy," Biophys. J. 95(1), 378-389 (2008). [CrossRef]
  13. G. Strang, Linear algebra and its applications (Thomson, 2006).
  14. A. H. A. Clayton, Q. S. Hanley, and P. J. Verveer, "Graphical representation and multicomponent analysis of single-frequency fluorescence lifetime imaging microscopy data," J. Microscopy 213(1), 1-5 (2004). [CrossRef]
  15. F. S. Wouters and A. Esposito, "Quantitative analysis of fluorescence lifetime imaging made easy," HFSP J. 2(1), 7-11 (2008). [CrossRef]
  16. M. A. Digman, V. R. Caiolfa, M. Zamai, and E. Gratton, "The phasor approach to fluorescence lifetime imaging analysis," Biophys. J. 94, L14-L16 (2007). [CrossRef] [PubMed]
  17. A. D. Elder, S. C. Schlachter, and C. F. Kaminski, "Theoretical investigation of the photon efficiency in frequency-domain FLIM," J. Opt. Soc. Am. A 25, 452-462 (2008). [CrossRef]
  18. D. M. Owen, E. Auksorius, H. B. Manning, C. B. Talbot, P. A. A. de Beule, C. Dunsby, M. A. A. Neil, and P. M. W. French, "Excitation-resolved hyperspectral fluorescence lifetime imaging using a UV-extended supercontinuum source," Opt. Lett. 32(23), 3408-3410 (2007). [CrossRef]
  19. P. Serge, J. R. P. Michael, K. Daekeun, K. Ki Hean, J. S. Tsu-Te, and T. C. S. Peter, "Frequency domain lifetime and spectral imaging microscopy," Microsc. Res. Tech. 69(11), 861-874 (2006).
  20. Q. S. Hanley, D. J. Arndt-Jovin, and T. M. Jovin, "Spectrally Resolved Fluorescence Lifetime Imaging Microscopy," Appl. Spectrosc. 56, 155-166 (2002). [CrossRef]
  21. J. A. Levitt, D. R. Matthews, S. M. Ameer-Beg, and K. Suhling, "Fluorescence lifetime and polarization-resolved imaging in cell biology," Curr. Opin. Biotechnol. 20(1), 28-36 (2009). [CrossRef]
  22. N. P. Galletly, J. McGinty, C. Dunsby, F. Teixeira, J. Requejo-Isidro, I. Munro, D. S. Elson, M. A. A. Neil, A. C. Chu, P. M. French, and G. W. Stamp, "Fluorescence lifetime imaging distinguishes basal cell carcinoma from surrounding uninvolved skin." British Journal of Dermatology 159, 152-161 (2008). [CrossRef] [PubMed]
  23. A. D. Elder, S.M. Matthews, J. Swartling, K. Yunus, J. H. Frank, C. M. Brennan, A. C. Fisher, and C. F. Kaminski, "The application of frequency-domain fluorescence lifetime imaging microscopy as a quantitative analytical tool for microfluidic devices," Opt. Express 14(12), 5456-5467 (2006). [CrossRef]
  24. S. M. Matthews, A. D. Elder, K. Yunus, C. F. Kaminski, C. M. Brennan, and A. C. Fisher, "Quantitative kinetic analysis in a microfluidic device using frequency-domain fluorescence lifetime imaging," Anal. Chem. 79(11), 4101-4109 (2007). [CrossRef]
  25. X. Dai, Z. Yue, M. E. Eccleston, J. Swartling, N. K. H. Slater, and C. F. Kaminski, "Fluorescence intensity and lifetime imaging of free and micellar-encapsulated doxorubicin in living cells," Nanomed. Nanotechnol. Bio. Med. 4(1), 49-56 (2008). [CrossRef]
  26. X. W. Dai, M. E. Eccleston, Z. L. Yue, N. K. H. Slater, and C. F. Kaminski, "A spectroscopic study of the self-association and inter-molecular aggregation behaviour of pH-responsive poly(L-lysine iso-phthalamide)," Polymer 47(8), 2689-2698 (2006). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited