OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 17, Iss. 25 — Dec. 7, 2009
  • pp: 22800–22812

Design of wide-angle solar-selective absorbers using aperiodic metal-dielectric stacks

Nicholas P. Sergeant, Olivier Pincon, Mukul Agrawal, and Peter Peumans  »View Author Affiliations


Optics Express, Vol. 17, Issue 25, pp. 22800-22812 (2009)
http://dx.doi.org/10.1364/OE.17.022800


View Full Text Article

Enhanced HTML    Acrobat PDF (493 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Spectral control of the emissivity of surfaces is essential in applications such as solar thermal and thermophotovoltaic energy conversion in order to achieve the highest conversion efficiencies possible. We investigated the spectral performance of planar aperiodic metal-dielectric multilayer coatings for these applications. The response of the coatings was optimized for a target operational temperature using needle-optimization based on a transfer matrix approach. Excellent spectral selectivity was achieved over a wide angular range. These aperiodic metal-dielectric stacks have the potential to significantly increase the efficiency of thermophotovoltaic and solar thermal conversion systems. Optimal coatings for concentrated solar thermal conversion were modeled to have a thermal emissivity <7% at 720K while absorbing >94% of the incident light. In addition, optimized coatings for solar thermophotovoltaic applications were modeled to have thermal emissivity <16% at 1750K while absorbing >85% of the concentrated solar radiation.

© 2009 OSA

OCIS Codes
(310.1620) Thin films : Interference coatings
(350.6050) Other areas of optics : Solar energy
(310.3915) Thin films : Metallic, opaque, and absorbing coatings
(310.4165) Thin films : Multilayer design

ToC Category:
Thin Films

History
Original Manuscript: September 29, 2009
Revised Manuscript: November 20, 2009
Manuscript Accepted: November 20, 2009
Published: November 30, 2009

Citation
Nicholas P. Sergeant, Olivier Pincon, Mukul Agrawal, and Peter Peumans, "Design of wide-angle solar-selective absorbers using aperiodic metal-dielectric stacks," Opt. Express 17, 22800-22812 (2009)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-17-25-22800


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. F. Burkholder and C. Kutscher, “Heat-Loss Testing of Solel’s UVAC3 Parabolic Trough Receiver,” NREL/TP-550–42394 (2008)
  2. F. Burkholder and C. Kutscher, “Heat Loss Testing of Schott's 2008 PTR70 Parabolic Trough Receiver,” NREL/TP-550–45633 (2009)
  3. A. Luque and V. M. Andreev, Concentrator Photovoltaics, Springer Series in Optical Sciences (Springer, New York), Chap. 9.
  4. N.-P. Harder and P. Wurfel, “Theoretical limits of thermophotovoltaic solar energy conversion,” Semicond. Sci. Technol. 18(5), S151–S157 (2003). [CrossRef]
  5. C.E. Kennedy, Review of Mid- to High-Temperature Solar Selective Absorber Materials, NREL/TP-520–31267 (2002)
  6. C. E. Kennedy, and H. Price, “Progress in development of high-temperature solar-selective coatings,” NREL/CP-520–36997 Proc. ISEC2005 2005 International Solar Energy Conference August 6–12, 2005, Orlando, Florida USA, ISEC2005–76039.
  7. Q.-C. Zhang and D. R. Mills, “Very low-emittance solar selective surfaces using new film structures,” J. Appl. Phys. 72(7), 3013 (1992). [CrossRef]
  8. R. N. Schmidt and K. C. Park, “High-Temperature Space-Stable Selective Solar Absorber Coatings,” Appl. Opt. 4(8), 917–925 (1965). [CrossRef]
  9. I. Celanovic, F. O’Sullivan, M. Ilak, J. Kassakian, and D. Perreault, “Design and optimization of one-dimensional photonic crystals for thermophotovoltaic applications,” Opt. Lett. 29(8), 863–865 (2004). [CrossRef] [PubMed]
  10. I. Celanovic, D. Pereault, and J. Kassakian, “Resonant-cavity enhanced thermal emission,” Phys. Rev. B 72(7), 075127 (2005). [CrossRef]
  11. C. E. Kennedy, “Progress to develop an advanced solar-selective coating,” 14th Biennial CSP SolarPACES Symposium, NREL/CD-550–42709 (2008)
  12. X.-F. Li, Y.-R. Chen, J. Miao, P. Zhou, Y.-X. Zheng, L.-Y. Chen, and Y. P. Lee, “High solar absorption of a multilayered thin film structure,” Opt. Express 15(4), 1907–1912 (2007). [CrossRef] [PubMed]
  13. A. Narayanaswamy and G. Chen, “Thermal emission control with one-dimensional metallodielectric photonic crystals,” Phys. Rev. B 70(12), 125101 (2004). [CrossRef]
  14. A. Narayanaswamy, J. Cybulksi, and G. Chen, “1D Metallo-Dielectric Photonic Crystals as Selective Emitters for Thermophotovoltaic Applications,” Thermophotovoltaic Generation of Electricity, Sixth Conference, CP738, 215 (2004)
  15. C. Cornelius and J. P. Dowling, “Modification of Planck blackbody radiation by photonic band-gap structures,” Phys. Rev. A 59(6), 4736–4746 (1999). [CrossRef]
  16. D. L. C. Chan, M. Soljacić, and J. D. Joannopoulos, “Thermal emission and design in one-dimensional periodic metallic photonic crystal slabs,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 74(1), 016609 (2006). [CrossRef] [PubMed]
  17. Y.-B. Chen and Z. M. Chang, “Design of tungsten complex gratings for thermophotovoltaic radiators,” Opt. Commun. 269(2), 411–417 (2007). [CrossRef]
  18. H. Sai, Y. Kanamori, K. Hane, and H. Yugami, “Numerical study on spectral properties of tungsten one-dimensional surface-relief gratings for spectrally selective devices,” J. Opt. Soc. Am. A 22(9), 1805–1813 (2005). [CrossRef]
  19. M. Diem, T. Koschny, and C. M. Soukoulis, “Wide-angle perfect absorber/thermal emitter in the terahertz regime,” Phys. Rev. B 79(3), 033101 (2009). [CrossRef]
  20. J. T. K. Wan, “Tunable thermal emission at infrared frequencies via tungsten gratings,” Opt. Commun. 282(8), 1671–1675 (2009). [CrossRef]
  21. D. L. C. Chan, M. Soljacić, and J. D. Joannopoulos, “Thermal emission and design in 2D-periodic metallic photonic crystal slabs,” Opt. Express 14(19), 8785–8796 (2006). [CrossRef] [PubMed]
  22. H. Sai and H. Yugami, “Thermophotovoltaic generation with selective radiators based on tungsten surface gratings,” Appl. Phys. Lett. 85(16), 3399 (2004). [CrossRef]
  23. H. Sai, Y. Kanamori, K. Hane, H. Yugami, and M. Yamaguchi, “Numerical study on tungsten selective radiators with various micro/nano structures,” Photovoltaic Specialists Conference, 2005. IEEE, 762–765 (2005)
  24. E. Rephaeli and S. Fan, “Tungsten black absorber for solar light with wide angular operation range,” Appl. Phys. Lett. 92(21), 211107 (2008). [CrossRef]
  25. H. Sai, H. Yugami, Y. Akiyama, Y. Kanamori, and K. Hane, “Spectral control of thermal emission by periodic microstructured surfaces in the near-infrared region,” J. Opt. Soc. Am. A 18(7), 1471–1476 (2001). [CrossRef]
  26. C.-F. Lin, C.-H. Chao, L. A. Wang, and W.-C. Cheng, “Blackbody radiation modified to enhance blue spectrum,” J. Opt. Soc. Am. B 22(7), 1517 (2005). [CrossRef]
  27. S. Y. Lin, J. Moreno, and J. G. Fleming, “Three-dimensional photonic-crystal emitter for thermal photovoltaic power generation,” Appl. Phys. Lett. 83(2), 380 (2003). [CrossRef]
  28. T. Trupke, P. Wurfel, and M. A. Green, “Comment on Three-dimensional photonic-crystal emitter for thermal photovoltaic power generation,” Appl. Phys. Lett. 84(11), 1997 (2004). [CrossRef]
  29. C. Luo, A. Narayanaswamy, G. Chen, and J. D. Joannopoulos, “Thermal radiation from photonic crystals: a direct calculation,” Phys. Rev. Lett. 93(21), 213905 (2004). [CrossRef] [PubMed]
  30. T. Karabacak, J. S. DeLuca, P.-I. Wang, G. A. Ten Eyck, D. Ye, G.-C. Wang, and T.-M. Lu, “Low temperature melting of copper nanorod arrays,” J. Appl. Phys. 99(6), 064304 (2006). [CrossRef]
  31. C. Schlemmer, J. Aschaber, V. Boerner, and J. Luther, “Thermal stability of micro-structured selective tungsten emitters, CP653, Thermophotovoltaics Generation of Electricity: 5th Conference, 164 (2003)
  32. O. Pincon, M. Agrawal and P. Peumans, “Aperiodic metallodielectric stacks for thermophotovoltaic applications,” submitted.
  33. P. Yeh, Optical waves in layered media, (John Wiley & Sons, Inc., New Jersey, 1998)
  34. E. B. Palik, Handbook of Optical Constants, (Academic Press, New York, 1985)
  35. M. A. Ordal, R. J. Bell, R. W. Alexander, L. A. Newquist, and M. R. Querry, “Optical properties of Al, Fe, Ti, Ta, W, and Mo at submillimeter wavelengths,” Appl. Opt. 27(6), 1203 (1988). [CrossRef] [PubMed]
  36. A. V. Tikhonravov, M. K. Trubetskov, and G. W. DeBell, “Application of the needle optimization technique to the design of optical coatings,” Appl. Opt. 35(28), 5493 (1996). [CrossRef] [PubMed]
  37. B. T. Sullivan and J. A. Dobrowolski, “Implementation of a numerical needle method for thin-film design,” Appl. Opt. 35(28), 5484 (1996). [CrossRef] [PubMed]
  38. J. A. Nelder and R. Mead, “A simplex method for function minimization,” Comput. J. 7, 308–313 (1965).
  39. Schott North America Inc, “White Paper on Solar thermal Power Plant Technology,” February 2006.
  40. A. De Vos, Endoreversible thermodynamics of solar energy conversion, (Oxford University Press, New York, 1992)
  41. E. Rephaeli and S. Fan, “Absorber and emitter for solar thermo-photovoltaic systems to achieve efficiency exceeding the Shockley-Queisser limit,” Opt. Express 17(17), 15145–15159 (2009). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited