OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 17, Iss. 25 — Dec. 7, 2009
  • pp: 22813–22822

Fabrication of optical waveguides by imprinting: Usage of positive tone resist as a mould for UV-curable polymer

Jussi Hiltunen, Marianne Hiltunen, Jarkko Puustinen, Jyrki Lappalainen, and Pentti Karioja  »View Author Affiliations

Optics Express, Vol. 17, Issue 25, pp. 22813-22822 (2009)

View Full Text Article

Enhanced HTML    Acrobat PDF (420 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Optical ridge type waveguides based on UV-curable polymer were fabricated by imprinting method. Positive tone resist patterned on a silicon wafer was used as a mould. The characterization of waveguides was carried out by coupling TE-polarized light from a tapered fiber into a waveguide with 30 mm length and mapping the intensity distribution with another tapered fiber at the output facet of a waveguide. Proper single- or multimode operation was observed depending on the waveguide width being either 2 µm or 6 µm. Experimental observations on the mode profiles were also supported by the simulation results. Average power transmissions of 32% at 1530 nm wavelength and 45% at 1310 nm wavelength were characterized. The results suggest that the simple mould fabrication process might be a useful technique for device prototyping and that the performance of replicated waveguides can meet the requirements for certain applications.

© 2009 OSA

OCIS Codes
(220.4000) Optical design and fabrication : Microstructure fabrication
(230.7370) Optical devices : Waveguides
(350.3850) Other areas of optics : Materials processing
(130.5460) Integrated optics : Polymer waveguides

ToC Category:
Integrated Optics

Original Manuscript: September 24, 2009
Revised Manuscript: November 12, 2009
Manuscript Accepted: November 12, 2009
Published: November 30, 2009

Jussi Hiltunen, Marianne Hiltunen, Jarkko Puustinen, Jyrki Lappalainen, and Pentti Karioja, "Fabrication of optical waveguides by imprinting: Usage of positive tone resist as a mould for UV-curable polymer," Opt. Express 17, 22813-22822 (2009)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. S. Y. Chou, P. R. Krauss, and P. J. Renstrom, “Imprint of sub-25 nm vias and trenches in polymers,” Appl. Phys. Lett. 67(21), 3114–3116 (1995). [CrossRef]
  2. L. J. Guo, “Recent progress in nanoimprint technology and its applications,” J. Phys. D Appl. Phys. 37(11), R123–R141 (2004). [CrossRef]
  3. H. Lan, Y. Ding, H. Liu, and B. Lu, “Review of the wafer stage for nanoimprint lithography,” Microelectron. Eng. 84(4), 684–688 (2007). [CrossRef]
  4. K. Pfeiffer, M. Fink, G. Ahrens, G. Gruetzner, F. Reuther, J. Seekamp, S. Zankovych, C. M. Sotomayor Torres, I. Maximov, M. Beck, M. Graczyk, L. Montelius, H. Schulz, H.-C. Scheer, and F. Steingrueber, “Polymer stamps for nanoimprinting,” Microelectron. Eng. 61–62(1-4), 393–398 (2002). [CrossRef]
  5. S. Obi, M. T. Gale, C. Gimkiewicz, and S. Westenhöfer, “Replicated Optical MEMS in Sol-Gel Materials,” IEEE J. Sel. Top. Quantum Electron. 10(3), 440–444 (2004). [CrossRef]
  6. J. Albero, L. Nieradko, C. Gorecki, H. Ottevaere, V. Gomez, H. Thienpont, J. Pietarinen, B. Päivänranta, and N. Passilly, “Fabrication of spherical microlenses by a combination of isotropic wet etching of silicon and molding techniques,” Opt. Express 17(8), 6283–6292 (2009). [CrossRef] [PubMed]
  7. T. Han, S. Madden, M. Zhang, R. Charters, and B. Luther-Davies, “Low Cost Nanoimprinted Polymer Waveguides,” in IEEE Conference Proceedings on Optoelectronic and Microelectronic Materials and Devices (2008), pp. 185–188.
  8. C.-Y. Chao, W. Fung, and L. J. Guo, “Polymer Microring Resonators for Biochemical Sensing Applications,” IEEE J. Sel. Top. Quantum Electron. 12(1), 134–142 (2006). [CrossRef]
  9. W.-J. Lee, J. W. Lim,S. H. Hwang, and B. S. Rho, “Imprint Master Fabricated by Ultra Precision Machining for Optical Waveguide,” in IEEE Proceedings of Opto-Electronics and Communications Conference and the Australian Conference on Optical (2008), pp. 1–2
  10. S.-Q. Xie, J. Wan, B.-R. Lu, Y. Sun, Y. Chen, X.-P. Qu, and R. Liu, “A nanoimprint lithography for fabricating SU-8 gratings for near-infrared to deep-UV application,” Microelectron. Eng. 85(5-6), 914–917 (2008). [CrossRef]
  11. J. Viheriälä, J. Tommila, T. Leinonen, M. Dumitrescu, L. Toikkanen, T. Niemi, and M. Pessa, “Applications of UV-nanoimprint soft stamps in fabrication of single-frequency diode lasers,” Microelectron. Eng. 86(3), 321–324 (2009). [CrossRef]
  12. K.-J. Byeon, S.-Y. Hwang, and H. Lee, “Fabrication of two-dimensional photonic crystal patterns on GaN-based light-emitting diodes using thermally curable monomer-based nanoimprint lithography,” Appl. Phys. Lett. 91(9), 091106 (2007). [CrossRef]
  13. J. T. Kim, J. J. Ju, S. Park, and M.-H. Lee, “O/E Integration of Polymer Waveguide Devices by Using Replication Technology,” IEEE J. Sel. Top. Quantum Electron. 13(2), 177–184 (2007). [CrossRef]
  14. H. J. Levinson, Principles of Lithography (SPIE Press, 2005), Chap. 2.
  15. Datasheet for Ormoclad, Microresist Technology, http://www.microresist.de/products/ormocers/pdf/pi_ormocore_clad_en_07062201_ls_neu.pdf
  16. FIMMWAVE software by Photon Design.
  17. G. Keiser, Optical fiber communications (McGraw Hill Companies, 2000)
  18. G. T. Reed, and A. P. Knights, Silicon photonics (Wiley, 2004)
  19. D. K. Sparacin, S. J. Spector, and L. C. Kimerling, “Silicon Waveguide Sidewall Smoothing by Wet Chemical Oxidation,” J. Lightwave Technol. 23(8), 2455–2461 (2005). [CrossRef]
  20. K. P. Yap, A. É. Delage, J. Lapointe, B. Lamontagne, J. H. Schmid, P. Waldron, B. A. Syrett, and S. Janz, “Correlation of Scattering Loss, Sidewall Roughness and Waveguide Width in Silicon-on-Insulator (SOI) Ridge waveguides,” J. Lightwave Technol. 27(18), 3999–4008 (2009). [CrossRef]
  21. H. Ma, A. K.-Y. Jen, and L. R. Dalton, “Polymer-Based Optical Waveguides: Materials, Processing and Devices,” Adv. Mater. 14(19), 1339–1365 (2002). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited