OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 17, Iss. 25 — Dec. 7, 2009
  • pp: 22871–22878

Ultra-rapid dispersion measurement in optical fibers

Wolfgang Wieser, Benjamin R. Biedermann, Thomas Klein, Christoph M. Eigenwillig, and Robert Huber  »View Author Affiliations

Optics Express, Vol. 17, Issue 25, pp. 22871-22878 (2009)

View Full Text Article

Enhanced HTML    Acrobat PDF (259 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We present a novel method to measure the chromatic dispersion of fibers with lengths of several kilometers. The technique is based on a rapidly swept Fourier domain mode locked laser driven at 50kHz repetition rate. Amplitude modulation with 400MHz and phase analysis yield the dispersion values over a 130nm continuous wavelength tuning range covering C and L band. The high acquisition speed of 10µs for individual wavelength-resolved traces Δt(λ) can reduce effects caused by thermal drift and acoustic vibrations. It enables real-time monitoring with update rates >100Hz even when averaging several hundred acquisitions for improved accuracy.

© 2009 OSA

OCIS Codes
(060.2270) Fiber optics and optical communications : Fiber characterization
(060.2400) Fiber optics and optical communications : Fiber properties
(060.2430) Fiber optics and optical communications : Fibers, single-mode
(060.4510) Fiber optics and optical communications : Optical communications
(140.3600) Lasers and laser optics : Lasers, tunable
(260.2030) Physical optics : Dispersion
(350.4800) Other areas of optics : Optical standards and testing
(060.3510) Fiber optics and optical communications : Lasers, fiber

ToC Category:
Fiber Optics and Optical Communications

Original Manuscript: October 13, 2009
Revised Manuscript: November 18, 2009
Manuscript Accepted: November 19, 2009
Published: November 30, 2009

Wolfgang Wieser, Benjamin R. Biedermann, Thomas Klein, Christoph M. Eigenwillig, and Robert Huber, "Ultra-rapid dispersion measurement 
in optical fibers," Opt. Express 17, 22871-22878 (2009)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. R. Huber, M. Wojtkowski, and J. G. Fujimoto, “Fourier Domain Mode Locking (FDML): A new laser operating regime and applications for optical coherence tomography,” Opt. Express 14(8), 3225–3237 (2006). [CrossRef] [PubMed]
  2. B. R. Biedermann, W. Wieser, C. M. Eigenwillig, T. Klein, and R. Huber, “Dispersion, coherence and noise of Fourier domain mode locked lasers,” Opt. Express 17(12), 9947–9961 (2009). [CrossRef] [PubMed]
  3. P. M. Andrews, Y. Chen, M. L. Onozato, S. W. Huang, D. C. Adler, R. A. Huber, J. Jiang, S. E. Barry, A. E. Cable, and J. G. Fujimoto, “High-resolution optical coherence tomography imaging of the living kidney,” Lab. Invest. 88(4), 441–449 (2008). [CrossRef] [PubMed]
  4. S. W. Huang, A. D. Aguirre, R. A. Huber, D. C. Adler, and J. G. Fujimoto, “Swept source optical coherence microscopy using a Fourier domain mode-locked laser,” Opt. Express 15(10), 6210–6217 (2007). [CrossRef] [PubMed]
  5. M. W. Jenkins, D. C. Adler, M. Gargesha, R. Huber, F. Rothenberg, J. Belding, M. Watanabe, D. L. Wilson, J. G. Fujimoto, and A. M. Rollins, “Ultrahigh-speed optical coherence tomography imaging and visualization of the embryonic avian heart using a buffered Fourier Domain Mode Locked laser,” Opt. Express 15(10), 6251–6267 (2007). [CrossRef] [PubMed]
  6. E. J. Jung, C. S. Kim, M. Y. Jeong, M. K. Kim, M. Y. Jeon, W. Jung, and Z. P. Chen, “Characterization of FBG sensor interrogation based on a FDML wavelength swept laser,” Opt. Express 16(21), 16552–16560 (2008). [PubMed]
  7. L. A. Kranendonk, X. An, A. W. Caswell, R. E. Herold, S. T. Sanders, R. Huber, J. G. Fujimoto, Y. Okura, and Y. Urata, “High speed engine gas thermometry by Fourier-domain mode-locked laser absorption spectroscopy,” Opt. Express 15(23), 15115–15128 (2007). [CrossRef] [PubMed]
  8. L. A. Kranendonk, R. Huber, J. G. Fujimoto, and S. T. Sanders, “Wavelength-agile H2O absorption spectrometer for thermometry of general combustion gases,” Proc. Combust. Inst. 31(1), 783–790 (2007). [CrossRef]
  9. M. Tateda, N. Shibata, and S. Seikai, “Interferometric method for chromatic dispersion measurement in a single-mode optical fiber,” IEEE J. Quantum Electron. 17(3), 404–407 (1981). [CrossRef]
  10. J. Y. Lee and D. Y. Kim, “Versatile chromatic dispersion measurement of a single mode fiber using spectral white light interferometry,” Opt. Express 14(24), 11608–11615 (2006). [CrossRef] [PubMed]
  11. A. Benner, “Optical Fiber Dispersion Measurement Using Color Center Laser,” Electron. Lett. 27(19), 1748–1750 (1991). [CrossRef]
  12. L. G. Cohen, “Comparison of Single-Mode Fiber Dispersion Measurement Techniques,” J. Lightwave Technol. 3(5), 958–966 (1985). [CrossRef]
  13. L. G. Cohen and C. Lin, “Pulse delay measurements in zero material dispersion wavelength region for optical fibers,” Appl. Opt. 16(12), 3136–3139 (1977). [CrossRef] [PubMed]
  14. C. Lin, L. G. Cohen, W. G. French, and H. M. Presby, “Measuring Dispersion in Single-Mode Fibers in the 1.1-1.3-mu-m Spectral Region - Pulse Synchronization Technique,” IEEE J. Quantum Electron. 16(1), 33–36 (1980). [CrossRef]
  15. A. Sugimura and K. Daikoku, “Wavelength Dispersion of Optical Fibers Directly Measured by Difference Method” in the 0.8-1.6 mu-m Range,” Rev. Sci. Instrum. 50(3), 343–346 (1979). [CrossRef] [PubMed]
  16. B. Christensen, J. Mark, G. Jacobsen, and E. Bo̸dtker, “Simpel dispersion measurement technique with high resolution,” Electron. Lett. 29, 132–134 (1993). [CrossRef]
  17. S. Ryu, Y. Horiuchi, and K. Mochizuki, “Novel Chromatic Dispersion Measurement Method Over Continuous Gigahertz Tuning Range,” J. Lightwave Technol. 7(8), 1177–1180 (1989). [CrossRef]
  18. J. Hult, R. S. Watt, and C. F. Kaminski, “Dispersion measurement in optical fibers using supercontinuum pulses,” J. Lightwave Technol. 25(3), 820–824 (2007). [CrossRef]
  19. K. S. Abedin, “Rapid, cost-effective measurement of chromatic dispersion of optical fibre over 1440-1625 nm using Sagnac interferometer,” Electron. Lett. 41(8), 469–471 (2005). [CrossRef]
  20. M. Fujise, M. Kuwazuru, M. Nunokawa, and Y. Iwamoto, “Highly Accurate Long-Span Chromatic Dispersion Measurement System by a New Physe-Shift Technique,” J. Lightwave Technol. 5(6), 751–758 (1987). [CrossRef]
  21. B. R. Biedermann, W. Wieser, C. M. Eigenwillig, G. Palte, D. C. Adler, V. J. Srinivasan, J. G. Fujimoto, and R. Huber, “Real time en face Fourier-domain optical coherence tomography with direct hardware frequency demodulation,” Opt. Lett. 33(21), 2556–2558 (2008). [CrossRef] [PubMed]
  22. K. S. Abedin, M. Hyodo, and N. Onodera, “Measurement of the chromatic dispersion of an optical fiber by use of a Sagnac interferometer employing asymmetric modulation,” Opt. Lett. 25(5), 299–301 (2000). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited