OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 17, Iss. 25 — Dec. 7, 2009
  • pp: 22960–22973

Multiple-channel optical signal processing with wavelength-waveform conversions, pulsewidth tunability, and signal regeneration

Hung Nguyen Tan, Motoharu Matsuura, Tomoya Katafuchi, and Naoto Kishi  »View Author Affiliations


Optics Express, Vol. 17, Issue 25, pp. 22960-22973 (2009)
http://dx.doi.org/10.1364/OE.17.022960


View Full Text Article

Enhanced HTML    Acrobat PDF (1329 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A multiple-channel multiple-function optical signal processor (MCMF-OSP) including wavelength-waveform conversions, pulsewidth tunability, and signal regeneration is realized through AND logic gate based on optical parametric processing with a pulsewidth-tunable RZ clock pump. The proposed scheme simultaneously offers four signal processing functions which are useful in wavelength-division multiplexing (WDM) transmission systems, and at network nodes with the necessity for multiple-channel data processing. After the discussions on the concept of MCMF-OSP, a proof-of concept experiment is demonstrated on four 10 Gb/s nonreturn-to-zero (NRZ) data format channels using nonlinearities in semiconductor optical amplifier (SOA) and highly nonlinear fiber (HNLF). A wavelength and waveform conversions to return-to-zero (RZ) modulation format are obtained together with pulsewidth-tunable range from 20% to 80% duty cycles for all input signals. The converted signals inherit the timing and waveform of the RZ clock pump, thus resulting in a time regeneration and large tolerance to narrow-band optical filtering (NAOF) and fiber accumulated chromatic dispersion (CD).

© 2009 Optical Society of America

OCIS Codes
(060.2330) Fiber optics and optical communications : Fiber optics communications
(190.4380) Nonlinear optics : Nonlinear optics, four-wave mixing
(250.5980) Optoelectronics : Semiconductor optical amplifiers
(250.4745) Optoelectronics : Optical processing devices

ToC Category:
Fiber Optics and Optical Communications

History
Original Manuscript: September 17, 2009
Revised Manuscript: October 26, 2009
Manuscript Accepted: October 29, 2009
Published: December 1, 2009

Citation
Hung Nguyen Tan, Motoharu Matsuura, Tomoya Katafuchi, and Naoto Kishi, "Multiple-channel optical signal processing with wavelength-waveform conversions, pulsewidth tunability, and signal regeneration," Opt. Express 17, 22960-22973 (2009)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-17-25-22960


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. R. J. Manning, A. D. Ellis, A. J. Poustie, and K. J. Blow, "Semiconductor laser amplifier for ultrafast all-optical signal processing," J. Opt. Soc. Am. B 14, 3204-3216 (1997). [CrossRef]
  2. S. Bigo, O. Leclerc, and E. Desurvire, "All-optical fiber signal processing and regeneration for soliton communications," IEEE J. Sel. Top. Quantum Electron. 3, 1208-1223 (1997). [CrossRef]
  3. A. E. Kelly, I. D. Phillips, R. J. Manning, A. D. Ellis, D. Nesset, D. G. Moodie, and R. Kashyap, "80 Gbit/s alloptical regenerative wavelength conversion using semiconductor optical amplifier based interferometer," Electron. Lett. 35, 1477-1478 (1999). [CrossRef]
  4. Y. Ueno, S. Nakamura, and K. Tajima, "Penalty-free error-free all-optical data pulse regeneration at 84 Gb/s by using a symmetric-Mach-Zehnder-type semiconductor regenerator," IEEE Photon. Technol. Lett. 13, 469-471 (2001). [CrossRef]
  5. Y. Liu, E. Tangdiongga, Z. Li, S. Zhang, H. de Waardt, G. D. Khoe, and H. J. S. Dorren, "Error-free all-optical wavelength conversion at 160 Gb/s using a semiconductor optical amplifier and an optical bandpass filter," J. Lightwave Technol. 24, 230-236 (2006). [CrossRef]
  6. N. Chi, L. Xu, K. S. Berg, T. Tokle, and P. Jeppesen, "All-optical wavelength conversion and multichannel 2R regeneration based on highly nonlinear dispersion-imbalanced loop mirror," IEEE Photon. Technol. Lett. 14, 469-471 (2002).
  7. Y. Huang, I. Glesk, R. Shankar, and P. R. Prucnal, "Simultaneous all-optical 3R regeneration scheme with improved scalability using TOAD," Opt. Express 14, 10339-10344 (2006). http://www.opticsinfobase. org/oe/abstract.cfm?URI=oe-14-22-10339. [CrossRef] [PubMed]
  8. S. Watanabe, S. Takeda, and T. Chikama, "Interband wavelength conversion of 320 Gb/s (32×10 Gb/s) WDM signal using a polarization-insensitive fiber four-wave mixer," in Proc. European Conference on Optical Communications (ECOC), (1998), 85-86.
  9. P. Devgan, R. Tang, V. S. Grigoryan, and P. Kumar, "Highly efficient multichannel wavelength conversion of DPSK signals," J. Lightwave Technol. 24, 3677-3682 (2006). [CrossRef]
  10. J. Yamawaku, H. Takara, T. Ohara, K. Sato, A. Takada, T. Morioka, 0. Tadanaga, H. Miyazawa, and M. Asobe, "Inter-band wavelength conversion of 25 GHz-spaced 1.03 Tbit/s (103×10 Gb/s) DWDM signals with small guard band and low crosstalk in PPLN waveguide," in Proc. Conference on Lasers and Electro-Optics (CLEO), (2003), CThPDB2.
  11. E. Yamazaki, A. Takada, J. Yamawaku, and T. Morioka, "Simultaneous and arbitrary wavelength conversion of WDM signals using multiple wavelength quasi phase matched LiNbO3 waveguide," in Proc. Optical Fiber Communication Conference (OFC), (2004), FL6.
  12. L. Noel, X. Shan, and A. D. Ellis, "Four WDM channel NRZ to RZ format conversion using a single semiconductor laser amplifier," Electron. Lett. 31, 277-278 (1995). [CrossRef]
  13. H. S. Chung, R. Inohara, K. Nishimura and M. Usami, "All-optical multi-wavelength conversion of 10 Gbit/s NRZ/RZ signals based on SOA-MZI for WDM multicasting," Electron. Lett. 41, 230-232 (2005). [CrossRef]
  14. C. H. Kwok and C. Lin, "Simultaneous 4×10 Gb/s NRZ-to-RZ modulation format conversion in nonlinear optical loop mirror with a photonic crystal fiber," IEEE Photon. Technol. Lett. 19, 1825-1827 (2007). [CrossRef]
  15. M. Vasilyev and T. I. Lakoba, "All-optical multichannel 2R regeneration in a fiber-based device," Opt. Lett. 30, 1458-1460 (2005). [CrossRef] [PubMed]
  16. Ch. Kouloumentas, P. Vorreau, L. Provost, P. Petropoulos, W. Freude, J. Leuthold, and I. Tomkos, "All-fiberized dispersion-managed multichannel regeneration at 43 Gb/s," IEEE Photon. Technol. Lett. 20, 1854-1856 (2008). [CrossRef]
  17. P. V. Mamyshev, "All-optical data regeneration based on self-phase modulation effect," in Proc. European Conference on Optical Communications (ECOC), (1998), 475-476.
  18. Y. Yu, X. Zhang, J. B. Rosas-Fernandez, D. Huang, R. V. Pemty, and I. H. White, "Simultaneous multiple DWDM channel NRZ-to-RZ regenerative format conversion at 10 and 20 Gb/s," Opt. Express 17, 3964-3969 (2009). http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-17-5-3964. [CrossRef] [PubMed]
  19. Y. Yu, X. Zhang, J. B. Rosas-Fernandez, D. Huang, R. V. Pemty, and I. H. White, "Single SOA based 16 DWDM channels all-optical NRZ-to-RZ format conversions with different duty cycles," Opt. Express 16,16166-16171 (2008). http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-16-20-16166. [CrossRef] [PubMed]
  20. A. Sano, Y. Miyamoto, T. Kataoka, and K. Hagimoto, "Long-span repeaterless transmission systems with optical amplifiers using pulse width management," J. Lightwave Technol. 16, 977-985 (1998). [CrossRef]
  21. L.-S, Yan, S. M. R. Motaghian Nezam, A. B. Sahin, J. E. McGeehan, T. Luo, Q. Yu, and Alan E. Willner, "Performance optimization of RZ data format in WDM systems using tunable pulse-width management at the transmitter," J. Lightwave Technol. 23, 1063-1067 (2005). [CrossRef]
  22. M. Matsuura, N. Kishi, and T. Miki, "Performances of a widely pulsewidth-tunable multiwavelength pulse generator by a single SOA-based delayed interferometric switch," Opt. Express 13,10010-10021 (2005). http://www.opticsexpress.org/abstract.cfm?uri=oe-13-25-10010. [CrossRef] [PubMed]
  23. H. Nguyen Tan, M. Matsuura, and N. Kishi, "Transmission performance of a wavelength and NRZ-to-RZ format conversion with pulsewidth tunability by combination of SOA- and fiber-based switches," Opt. Express 16, 19063-19071 (2008). http://www.opticsinfobase.org/oe/abstract.cfm?URI= oe-16-23-19063. [CrossRef]
  24. D. Zhou, B. C. Wang, R. J. Runser, I. Glesk, and P. R. Prucnal, "Perfectly synchronized bit-parallel WDM data transmission over a single optical fiber," IEEE Photon. Technol. Lett. 13, 382-384 (2001). [CrossRef]
  25. H. J. S. Dorren, M. T. Hill, Y. Liu, N. Calabretta, A. Srivatsa, F. M. Huijskens, H. deWaardt, and G. D. Khoe, "Optical packet switching and buffering by using all-optical signal processing methods," J. Lightwave Technol. 21, 2-12 (2003). [CrossRef]
  26. K. I. Kang, T. G. Chang, I. Glesk, and P. R. Prucnal, "Comparison of Sagnac and Mach-Zehnder ultrafast alloptical interferometric switches based on a semiconductor resonant optical nonlinearity," Appl. Opt. 35, 417-426 (1996). [CrossRef] [PubMed]
  27. M. Matsuura, and N. Kishi, "All-optical wavelength and pulsewidth conversions with a Sagnac interferometer semiconductor based switch," Opt. Lett. 28, 132-134 (2003). [CrossRef] [PubMed]
  28. C. Johnson, K. Demarest, C. Allen, R. Hui, K. V. Peddanarappagari, and B. Zhu, "Multiwavelength all-optical clock recovery," IEEE Photon. Technol. Lett. 11, 895-597 (1999). [CrossRef]
  29. V. Mikhailov and P. Bayvel, "All-optical multiwavelength clock recovery using integrated semiconductor amplifier array module," Electron. Lett. 37, 232-234 (2001). [CrossRef]
  30. J. Lasri, P. Devgan, V. S. Grigoryan, P. Kumar, "Multiwavelength NRZ-to-RZ conversion with significant timingjitter suppression and SNR improvement," Opt. Commun. 240, 293-298 (2004). [CrossRef]
  31. I. Brener, M. Chou, E. Chaban, K. Parameswaran, M. Fejer, and S. Kosinski, "Polarization-insensitive parametric wavelength converter based on cascaded nonlinearities in LiNbO3 waveguides," in Proc. Optical Fiber Communication Conference (OFC), (2000), TuF11.
  32. G. W. Lu, L. K. Chen, and C. K. Chan, "Novel NRZ-to-RZ format conversion with tunable pulsewidth using phase modulator and interleaver," in Proc. Optical Fiber Communication Conference (OFC), (2006), JThB32.
  33. H. Nguyen Tan, M. Matsuura, and N. Kishi, "Pulsewidth tunable NRZ-to-RZ data format conversion by combination of SOA- and fiber-based switches," in Proc. OptoElectronics and Communications Conference (OECC/ACOFT), (2008), TuF-5.
  34. M. Vasilyev, I. Tomkos, M. Mehendale, J.-K. Rhee, A. Kobyakov, M. Ajgaonkar, S. Tsuda, and M. Sharma, "Transparent ultra-long-haul DWDM networks with broadcast-and-select OADM/OXC architecture," J. Lightwave Technol. 21, 2661-2672 (2003). [CrossRef]
  35. C. Caspar, H. M. Foisel, R. Freund, U. Kruger, B. Strebel, "Cascadability of arrayed-waveguide grating (de)multiplexers in transparent optical networks," in Proc. Optical Fiber Communication Conference (OFC), (1997), TuE2. [CrossRef]
  36. Y. Jiang, X. Tang, J. C. Cartledge, and K. Roberts, "Electronic pre-compensation of narrow optical filtering for OOK, DPSK and DQPSK modulation formats," J. Lightwave Technol. 27, 3689-3698 (2009). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited