OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 17, Iss. 25 — Dec. 7, 2009
  • pp: 22983–22991

Instantaneous frequency measurement system using optical mixing in highly nonlinear fiber

Lam A. Bui, Mark D. Pelusi, Trung D. Vo, Niusha Sarkhosh, Hossein Emami, Benjamin J. Eggleton, and Arnan Mitchell  »View Author Affiliations


Optics Express, Vol. 17, Issue 25, pp. 22983-22991 (2009)
http://dx.doi.org/10.1364/OE.17.022983


View Full Text Article

Enhanced HTML    Acrobat PDF (300 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A broadband photonic instantaneous frequency measurement system utilizing four-wave mixing in highly nonlinear fiber is demonstrated. This new approach is highly stable and does not require any high-speed electronics or photodetectors. A first principles model accurately predicts the system response. Frequency measurement responses from 1 to 40 GHz are demonstrated and simple reconfiguration allows the system to operate over multiple bands.

© 2009 OSA

OCIS Codes
(060.2360) Fiber optics and optical communications : Fiber optics links and subsystems
(350.4010) Other areas of optics : Microwaves
(190.4223) Nonlinear optics : Nonlinear wave mixing

ToC Category:
Fiber Optics and Optical Communications

History
Original Manuscript: July 20, 2009
Revised Manuscript: October 8, 2009
Manuscript Accepted: November 12, 2009
Published: December 1, 2009

Citation
Lam A. Bui, Mark D. Pelusi, Trung D. Vo, Niusha Sarkhosh, Hossein Emami, Benjamin J. Eggleton, and Arnan Mitchell, "Instantaneous frequency measurement system using optical mixing in highly nonlinear fiber," Opt. Express 17, 22983-22991 (2009)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-17-25-22983


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. J. Capmany and D. Novak, “Microwave photonics combines two worlds,” Nat. Photonics 1(6), 319–330 (2007). [CrossRef]
  2. A. J. Seeds, “Microwave photonics,” IEEE Trans. Microw. Theory Tech. 50(3), 877–887 (2002). [CrossRef]
  3. R. Helkey, J. V. Twinchel, and C. Cox, “A down-conversion optical link with RF gain,” J. Lightwave Technol. 15(6), 956–961 (1997). [CrossRef]
  4. R. A. Minasian, “Photonic signal processing of microwave signals,” IEEE Trans. Microw. Theory Tech. 54(2), 832–846 (2006). [CrossRef]
  5. A. Lindsay, G. Knight, and S. Winfall, “Photonic Mixers for wide bandwidth RF receiver Applications,” IEEE Trans. Microw. Theory Tech. 43(9), 2311–2317 (1995). [CrossRef]
  6. R. D. Esman, M. Y. Frankel, J. L. Dexter, L. Goldberg, M. G Parent, D Stilwell, and D. G. Cooper, “Fiber-optic prism true time-delay antenna feed,” IEEE Photon. Technol. Lett. 5(11), 1347–1349 (1993). [CrossRef]
  7. H. Emami, N. Sarkhosh, L. A. Bui, and A. Mitchell, “Wideband RF photonic in-phase and quadrature-phase generation,” Opt. Lett. 33(2), 98–100 (2008). [CrossRef] [PubMed]
  8. L. V. T. Nguyen and D. B. Hunter, “A Photonic technique for microwave frequency measurement,” IEEE Photon. Technol. Lett. 18(10), 1188–1190 (2006). [CrossRef]
  9. N. Sarkhosh, H. Emami, L. Bui, and A. Mitchell, “Reduced cost photonic instantaneous frequency measurement system,” IEEE Photon. Technol. Lett. 20(18), 1521–1523 (2008). [CrossRef]
  10. G. P. Agrawal, Nonlinear Fiber Optics (Academic Press, San Diego, 2001).
  11. S. Radic, D. J. Moss, and B. J. Eggleton, “Nonlinear Optics in Communications: From Crippling Impairment to Ultrafast Tools” in Optical Fiber Telecommunications V: Components and Sub-systems, I. P. Kaminow, T. Li, and A. E. Willner, ed. (Academic Press, Oxford, UK, February 2008), Chap. 20.
  12. J. Li, B. E. Olsson, M. Karlsson, and P. A Andrekson, “OTDM demultiplexer based on XPM-induced wavelength shifting in highly nonlinear fiber,” IEEE Photon. Technol. Lett. 15(12), 1770–1772 (2003). [CrossRef]
  13. V. G. Ta'eed, M. Shokooh-Saremi, L. Fu, I. C. M. Littler, D. J. Moss, M. Rochette, B. J. Eggleton, B. Yinlan Ruan, and B. Luther-Davies, “Self-phase modulation-based integrated optical regeneration in chalcogenide waveguides,” IEEE J. Sel. Top. Quantum Electron. 12(3), 360–370 (2006). [CrossRef]
  14. J. Capmany, S. Sales, D. Pastor, and B. Ortega, “Optical mixing of microwave signals in a nonlinear semiconductor laser amplifier modulator,” Opt. Express 10(3), 183–189 (2002). [PubMed]
  15. M. Pelusi, F. Luan, T. D. Vo, M. R. E. Lamont, S. J. Madden, D. A. Bulla, D.-Y. Choi, B. Luther-Davies, and B. J. Eggleton, “Photonic-chip-based radio-frequency spectrum analyser with terahertz bandwidth,” Nat. Photonics 3(3), 139–143 (2009). [CrossRef]
  16. H. Cuckson, and P. D. Curtis, “Microwave instantaneous frequency measurement apparatus,” United States Patent 4414505, 8 Nov. (1983).
  17. G.-C. Liang, C.-F. Shih, R. S. Withers, B. F. Cole, M. E. Johansson, and L. P. Suppan., “Superconductive digital instantaneous frequency measurement subsystem,” IEEE Trans. Microw. Theory Tech. 41(12), 2368–2375 (1993). [CrossRef]
  18. U. Gliese, S. Norskov, and T. N. Nielsen, “Chromatic dispersion in fiber-optic microwave and millimeter-wavelinks,” IEEE Trans. Microw. Theory Tech. 44(10), 1716–1724 (1996). [CrossRef]
  19. N. Sarkhosh, H. Emami, L. Bui, and A. Mitchell, “Microwave photonic instantaneous frequency measurement with improved sensitivity,” In Proceedings of IEEE International Microwave Symposium (IMS 2009), 165–168. (2009)
  20. H. Emami, N. Sarkhosh, L. A. Bui, and A. Mitchell, “Amplitude independent RF instantaneous frequency measurement system using photonic Hilbert transform,” Opt. Express 16(18), 13707–13712 (2008). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited