OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 17, Iss. 25 — Dec. 7, 2009
  • pp: 22992–23002

Non-mechanical sub-pixel image shifter for acquiring super-resolution digital images

Hsiao-Chin Lan, Mount-Learn Wu, and Eric M. Yeatman  »View Author Affiliations

Optics Express, Vol. 17, Issue 25, pp. 22992-23002 (2009)

View Full Text Article

Enhanced HTML    Acrobat PDF (1365 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A sub-pixel image shifter is presented, for use in enhancing the spatial resolution of digital image sensors by combining multiple displaced sub-images using a super-resolution (SR) algorithm. The device uses the walk-off phenomenon in birefringent crystals to separate images with opposite polarizations by a sub-pixel displacement. A liquid crystal (LC) waveplate plus a polarizer can then select the specific image to be exposed, with fast, non-mechanical control. This cascaded device, comprising two sapphire crystals, two LCs, and a single polarizer, is capable of 2-dimensional image shift with displacements of 0.5 pixels. The experimental results show that the image registration stability can be precisely controlled within 0.05 pixels and the contrast transfer function ratio of the SR image is enhanced by up to 1.36 times compared to the original captured image. Moreover, based on the fast transition time of LCs, the displaced sub-images can be recorded in video form with a frame rate of 40 fps.

© 2009 OSA

OCIS Codes
(100.0100) Image processing : Image processing
(100.6640) Image processing : Superresolution
(160.3710) Materials : Liquid crystals
(260.1440) Physical optics : Birefringence
(150.6044) Machine vision : Smart cameras

ToC Category:
Image Processing

Original Manuscript: August 25, 2009
Revised Manuscript: October 15, 2009
Manuscript Accepted: October 15, 2009
Published: December 1, 2009

Hsiao-Chin Lan, Mount-Learn Wu, and Eric M. Yeatman, "Non-mechanical sub-pixel image shifter for acquiring super-resolution digital images," Opt. Express 17, 22992-23002 (2009)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. W. Wolf, B. Ozer, and T. Lv, “Smart Cameras as Embedded Systems,” IEEE Computer 35(9), 48–53 (2002). [CrossRef]
  2. M. Bramberger, A. Doblander, A. Maier, B. Rinner, and H. Schwabach, “Distributed Embedded Smart Cameras for Surveillance Applications,” IEEE Computer 39(2), 68–75 (2006). [CrossRef]
  3. S. K. Nayar, “Computational Cameras: Redefining the Image,” IEEE Computer 39(8), 30–38 (2006). [CrossRef]
  4. M. Ben-Ezra, A. Zomet, and S. K. Nayar, “Video super-resolution using controlled subpixel detector shifts,” IEEE Trans. Pattern Anal. Mach. Intell. 27(6), 977–987 (2005). [CrossRef] [PubMed]
  5. C. Y. Gao, and N. Ahuja, “A refractive camera for acquiring stereo and super-resolution images,” in Proceedings of the 2006 IEEE Computer Society Conference on Computer Vision Pattern Recognition (2006), pp. 2316–2323.
  6. K. Yu, N. Park, D. Lee, and O. Solgaard, “Superresolution digital image enhancement by subpixel image translation with a scanning micromirror,” IEEE J. Sel. Top. Quantum Electron. 13(2), 304–311 (2007). [CrossRef]
  7. R. A. Hicks, V. T. Nasis, and T. P. Kurzweg, “Programmable imaging with two-axis micromirrors,” Opt. Lett. 32(9), 1066–1068 (2007). [CrossRef] [PubMed]
  8. A. Mohan, X. Huang, J. Tumblin, and R. Raskar, “Sensing increased image resolution using aperture masks,” in Proceedings of the 2008 IEEE Computer Society Conference on Computer Vision Pattern Recognition (2008).
  9. R. F. Marcia, C. Kim, C. Eldeniz, J. Kim, D. J. Brady, and R. M. Willett, “Superimposed video disambiguation for increased field of view,” Opt. Express 16(21), 16352–16363 (2008), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-16-21-16352 . [CrossRef] [PubMed]
  10. E. Choi, J. Choi, and M. G. Kang, “Super-resolution approach to overcome physical limitations of imaging sensors: an overview,” Int. J. Imaging Syst. Technol. 14(2), 36–46 (2004). [CrossRef]
  11. C. Park, M. K. Park, M. G. Kang,, S. C Park, M. K Park, and M. G Kang, “Super-resolution image reconstruction: a technical overview,” IEEE Signal Process. Mag. 20(3), 21–36 (2003). [CrossRef]
  12. P. Vandewalle, L. Sbaiz, J. Vandewalle, and M. Vetterli, “Super-resolution from unregistered and totally aliased signals using subspace methods,” IEEE Trans. Signal Process. 55(7), 3687–3703 (2007). [CrossRef]
  13. D. Keren, S. Peleg, and R. Brada, “Image sequence enhancement using sub-pixel displacements,” in Proceedings of the 2006 IEEE Computer Society Conference on Computer Vision Pattern Recognition (1988), pp. 742–746.
  14. H. Stark and P. Oskoui, “High-resolution image recovery from image-plane arrays, using convex projections,” J. Opt. Soc. Am. A 6(11), 1715–1726 (1989). [CrossRef] [PubMed]
  15. K. Nishiyama, M. Okita, S. Kawaguchi, K. Teranishi, and R. Takamatsu, “32” WXGA LCD TV using OCB Mode, low temperature p-Si TFT and blinking backlight technology,” in SID Tech. Dig.36(1), 132–135 (2005).
  16. S. Gauza, X. Zhu, W. Piecek, R. Dabrowski, and S. T. Wu, ““Fast Switching Liquid Crystals for Color-Sequential LCDs, ” IEEE/OSA J, Display Technol. 3(3), 250–252 (2007). [CrossRef]
  17. J. M. Liu, Photonic Devices (Cambridge University Press, 2005), Chap. 1.
  18. J. J. Wang, J. Deng, X. Deng, F. Liu, P. Sciortino, L. Chen, A. Nikolov, and A. Graham, “Innovative high-performance nanowire-grid polarizers and integrated isolators,” IEEE J. Sel. Top. Quantum Electron. 11(1), 241–253 (2005). [CrossRef]
  19. Y. Ekinci, H. H. Solak, C. David, and H. Sigg, “Bilayer Al wire-grids as broadband and high-performance polarizers,” Opt. Express 14(6), 2323–2334 (2006), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-14-6-2323 . [CrossRef] [PubMed]
  20. R. Lu, X. Zhu, S. T. Wu, Q. Hong, and T. X. Wu, “Ultrawide-View Liquid Crystal Displays,” IEEE/OSA J Display Technol. 1(1), 3–14 (2005). [CrossRef]
  21. R. Raskar, A. Agrawal, and J. Tumblin, “Coded exposure photography: motion deblurring using fluttered shutter,” ACM Trans. Graph. 25(3), 795–804 (2006) (TOG). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited