OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 17, Iss. 25 — Dec. 7, 2009
  • pp: 23010–23015

Investigation of mode coupling in a microdisk resonator for realizing directional emission

Yue-De Yang, Shi-Jiang Wang, and Yong-Zhen Huang  »View Author Affiliations

Optics Express, Vol. 17, Issue 25, pp. 23010-23015 (2009)

View Full Text Article

Enhanced HTML    Acrobat PDF (242 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Mode coupling between the whispering-gallery modes (WGMs) is numerically investigated for a two-dimensional microdisk resonator with an output waveguide. The equilateral-polygonal shaped mode patterns can be constructed by mode coupling in the microdisk, and the coupled modes can still keep high quality factors (Q factors). For a microdisk with a diameter of 4.5 μm and a refractive index of 3.2 connected to a 0.6-μm-wide output waveguide, the coupled mode at the wavelength of 1490 nm has a Q factor in the order of 104, which is ten times larger than those of the uncoupled WGMs, and the output efficiency defined as the ratio of the energy flux confined in the output waveguide to the total radiation energy flux is about 0.65. The mode coupling can be used to realize high efficiency directional-emission microdisk lasers.

© 2009 OSA

OCIS Codes
(140.4780) Lasers and laser optics : Optical resonators
(140.5960) Lasers and laser optics : Semiconductor lasers
(140.3945) Lasers and laser optics : Microcavities

ToC Category:
Lasers and Laser Optics

Original Manuscript: July 31, 2009
Revised Manuscript: October 9, 2009
Manuscript Accepted: November 23, 2009
Published: December 1, 2009

Yue-De Yang, Shi-Jiang Wang, and Yong-Zhen Huang, "Investigation of mode coupling in a microdisk resonator for realizing directional emission," Opt. Express 17, 23010-23015 (2009)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. S. L. McCall, A. F. J. Levi, R. E. Slusher, S. J. Pearton, and R. A. Logan, “Whispering-gallery mode microdisk lasers,” Appl. Phys. Lett. 60(3), 289–291 (1992). [CrossRef]
  2. C. Gmachl, F. Capasso, E. E. Narimanov, J. U. Nöckel, A. D. Stone, J. Faist, D. L. Sivco, and A. Y. Cho, “High-power directional emission from microlasers with chaotic resonators,” Science 280(5369), 1556–1564 (1998). [CrossRef] [PubMed]
  3. G. D. Chern, H. E. Tureci, A. D. Stone, R. K. Chang, M. Kneissl, and N. M. Johnson, “Unidirectional lasing from InGaN multiple-quantum-well spiral-shaped micropillars,” Appl. Phys. Lett. 83(9), 1710–1712 (2003). [CrossRef]
  4. S. K. Kim, S. H. Kim, G. H. Kim, H. G. Park, D. J. Shin, and Y. H. Lee, “Highly directional emission from few-micron-size elliptical microdisks,” Appl. Phys. Lett. 84(6), 861–863 (2004). [CrossRef]
  5. S. V. Boriskina, T. M. Benson, P. Sewell, and A. I. Nosich, “Directional emission, increased free spectral range, and mode Q-factors of 2-D wavelength-scale optical microcavity structures,” IEEE J. Sel. Top. Quantum Electron. 12, 1175–1182 (2006). [CrossRef]
  6. S. J. Choi, K. Djordjev, S. J. Choi, and P. D. Dapkus, “Microdisk lasers vertically coupled to output waveguides,” IEEE Photon. Technol. Lett. 15(10), 1330–1332 (2003). [CrossRef]
  7. J. Van Campenhout, P. Rojo Romeo, P. Regreny, C. Seassal, D. Van Thourhout, S. Verstuyft, L. Di Cioccio, J. M. Fedeli, C. Lagahe, and R. Baets, “Electrically pumped InP-based microdisk lasers integrated with a nanophotonic silicon-on-insulator waveguide circuit,” Opt. Express 15(11), 6744–6749 (2007). [CrossRef] [PubMed]
  8. Y. Baryshnikov, P. Heider, W. Parz, and V. Zharnitsky, “Whispering gallery modes inside asymmetric resonant cavities,” Phys. Rev. Lett. 93(13), 133902 (2004). [CrossRef] [PubMed]
  9. S. Y. Lee, S. Rim, J. W. Ryu, T. Y. Kwon, M. Choi, and C. M. Kim, “Quasiscarred resonances in a spiral-shaped microcavity,” Phys. Rev. Lett. 93(16), 164102 (2004). [CrossRef] [PubMed]
  10. J. Wiersig and M. Hentschel, “Unidirectional light emission from high-Q modes in optical microcavities,” Phys. Rev. A 73(3), 031802 (2006). [CrossRef]
  11. Y. Z. Huang, Y. H. Hu, Q. Chen, S. J. Wang, Y. Du, and Z. C. Fan, “Room-Temperature Continuous-Wave Electrically Injected InP–GaInAsP Equilateral-Triangle-Resonator Lasers,” IEEE Photon. Technol. Lett. 19(13), 963–965 (2007). [CrossRef]
  12. Y. Z. Huang, K. J. Che, Y. D. Yang, S. J. Wang, Y. Du, and Z. C. Fan, “Directional emission InP/GaInAsP square-resonator microlasers,” Opt. Lett. 33(19), 2170–2172 (2008). [CrossRef] [PubMed]
  13. M. Hentschel and K. Richter, “Quantum chaos in optical systems: the annular billiard,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 66(5 Pt 2), 056207 (2002). [CrossRef] [PubMed]
  14. A. Taflove, and S. C. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method. (Boston: Artech House, 2005).
  15. W. H. Guo, W. J. Li, and Y. Z. Huang, “Computation of resonator frequencies and quality factors of cavities by FDTD technique and padé approximation,” IEEE Microwave. Wireless Compon. Lett. 11(5), 223–225 (2001). [CrossRef]
  16. Y. Z. Huang, S. J. Wang, Y. D. Yang, J. L. Xiao, Y. H. Hu, and Y. Du, “Optical bistability in InP/GaInAsP equilateral-triangle-resonator microlasers,” Opt. Lett. 34(12), 1852–1854 (2009). [CrossRef] [PubMed]
  17. M. Fujita and T. Baba, “Microgear laser,” Appl. Phys. Lett. 80(12), 2051–2053 (2002). [CrossRef]
  18. Y. D. Yang, Y. Z. Huang, and S. J. Wang, “Mode analysis for equilateral–triangle -resonator microlasers with metal confinement layers,” IEEE J. Quantum Electron. in press. [PubMed]
  19. Y. D. Yang, Y. Z. Huang, and Q. Chen, “High-Q TM whispering-gallery modes in three-dimensional microcylinders,” Phys. Rev. A 75(1), 013817 (2007). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited