OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 17, Iss. 25 — Dec. 7, 2009
  • pp: 23114–23122

Magnetomotive nanoparticle transducers for optical rheology of viscoelastic materials

Vasilica Crecea, Amy L. Oldenburg, Xing Liang, Tyler S. Ralston, and Stephen A. Boppart  »View Author Affiliations


Optics Express, Vol. 17, Issue 25, pp. 23114-23122 (2009)
http://dx.doi.org/10.1364/OE.17.023114


View Full Text Article

Enhanced HTML    Acrobat PDF (288 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The availability of a real-time non-destructive modality to interrogate the mechanical properties of viscoelastic materials would facilitate many new investigations. We introduce a new optical method for measuring elastic properties of samples which employs magnetite nanoparticles as perturbative agents. Magnetic nanoparticles distributed in silicone-based samples are displaced upon probing with a small external magnetic field gradient and depth-resolved optical coherence phase shifts allow for the tracking of scatterers in the sample with nanometer-scale sensitivity. The scatterers undergo underdamped oscillations when the magnetic field is applied step-wise, allowing for the measurement of the natural frequencies of oscillation of the samples. Validation of the measurements is accomplished using a commercial indentation apparatus to determine the elastic moduli of the samples. This real-time non-destructive technique constitutes a novel way of probing the natural frequencies of viscoelastic materials in which magnetic nanoparticles can be introduced.

© 2009 OSA

OCIS Codes
(120.5050) Instrumentation, measurement, and metrology : Phase measurement
(120.5820) Instrumentation, measurement, and metrology : Scattering measurements
(160.3820) Materials : Magneto-optical materials
(170.4500) Medical optics and biotechnology : Optical coherence tomography

ToC Category:
Instrumentation, Measurement, and Metrology

History
Original Manuscript: October 11, 2009
Revised Manuscript: November 18, 2009
Manuscript Accepted: December 1, 2009
Published: December 2, 2009

Citation
Vasilica Crecea, Amy L. Oldenburg, Xing Liang, Tyler S. Ralston, and Stephen A. Boppart, "Magnetomotive nanoparticle transducers for optical rheology of viscoelastic materials," Opt. Express 17, 23114-23122 (2009)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-17-25-23114


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. N. W. Tschoegl, The phenomenological theory of linear viscoelastic behavior: an introduction (Springer-Verlag, 1989).
  2. A. Wineman, and K. Rajagopal, Mechanical Response of Polymers (Cambridge University Press, 2000).
  3. J. Ferry, Viscoelastic Properties of Polymers (John Wiley and Sons, 1980).
  4. D. Ouis, “Characterization of polymers by means of a standard viscoelastic model and fractional derivative calculus,” Int. J. Polym. Mater. 53(8), 633–644 (2004). [CrossRef]
  5. M. Sridhar, J. Liu, and M. F. Insana, “Elasticity imaging of polymeric media,” J. Biomech. Eng. 129(2), 259–272 (2007). [CrossRef] [PubMed]
  6. J. F. Greenleaf, M. Fatemi, and M. Insana, “Selected methods for imaging elastic properties of biological tissues,” Annu. Rev. Biomed. Eng. 5(1), 57–78 (2003). [CrossRef] [PubMed]
  7. J. Ophir, S. K. Alam, B. S. Garra, F. Kallel, E. E. Konofagou, T. Krouskop, C. R. B. Merritt, R. Righetti, R. Souchon, S. Srinivasan, and T. Varghese, “Elastography: imaging the elastic properties of soft tissues with ultrasound,” J. Med. Ultrasound 29(4), 155–171 (2002). [CrossRef]
  8. I. Céspedes, J. Ophir, H. Ponnekanti, and N. Maklad, “Elastography: elasticity imaging using ultrasound with application to muscle and breast in vivo,” Ultrason. Imaging 15(2), 73–88 (1993). [CrossRef] [PubMed]
  9. R. Muthupillai, D. J. Lomas, P. J. Rossman, J. F. Greenleaf, A. Manduca, and R. L. Ehman, “Magnetic resonance elastography by direct visualization of propagating acoustic strain waves,” Science 269(5232), 1854–1857 (1995). [CrossRef] [PubMed]
  10. A. Manduca, T. E. Oliphant, M. A. Dresner, J. L. Mahowald, S. A. Kruse, E. Amromin, J. P. Felmlee, J. F. Greenleaf, and R. L. Ehman, “Magnetic resonance elastography: in vivo non-invasive mapping of tissue elasticity,” Med. Image Anal. 5(4), 237–254 (2001). [CrossRef] [PubMed]
  11. A. J. Romano, J. A. Bucaro, R. L. Ehnan, and J. J. Shirron, “Evaluation of a material parameter extraction algorithm using MRI-based displacement measurements,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 47(6), 1575–1581 (2000). [CrossRef] [PubMed]
  12. R. Sinkus, M. Tanter, S. Catheline, J. Lorenzen, C. Kuhl, E. Sondermann, and M. Fink, “Imaging anisotropic and viscous properties of breast tissue by magnetic resonance-elastography,” Magn. Reson. Med. 53(2), 372–387 (2005). [CrossRef] [PubMed]
  13. O. V. Rudenko, A. P. Sarvazyan, and S. Y. Emelianov, “Acoustic radiation force and streaming induced by focused nonlinear ultrasound in a dissipative medium,” J. Acoust. Soc. Am. 99(5), 2791–2798 (1996). [CrossRef]
  14. S. Chen, M. Fatemi, and J. F. Greenleaf, “Remote measurement of material properties from radiation force induced vibration of an embedded sphere,” J. Acoust. Soc. Am. 112(3 Pt 1), 884–889 (2002). [CrossRef] [PubMed]
  15. C. Reynaud, F. Sommer, C. Quet, N. El Bounia, and T. M. Duc, “Quantitative determination of Young’s modulus on a biphase polymer system using atomic force microscopy,” Surf. Interface Anal. 30(1), 185–189 (2000). [CrossRef]
  16. J. M. Schmitt, “OCT elastography: imaging microscopic deformation and strain of tissue,” Opt. Express 3(6), 199–211 (1998). [CrossRef] [PubMed]
  17. A. S. Khalil, R. C. Chan, A. H. Chau, B. E. Bouma, and M. R. Mofrad, “Tissue elasticity estimation with optical coherence elastography: toward mechanical characterization of in vivo soft tissue,” Ann. Biomed. Eng. 33(11), 1631–1639 (2005). [CrossRef] [PubMed]
  18. G. van Soest, F. Mastik, N. de Jong, and A. F. W. van der Steen, “Robust intravascular optical coherence elastography by line correlations,” Phys. Med. Biol. 52(9), 2445–2458 (2007). [CrossRef] [PubMed]
  19. J. Rogowska, N. A. Patel, J. G. Fujimoto, and M. E. Brezinski, “Optical coherence tomographic elastography technique for measuring deformation and strain of atherosclerotic tissues,” Heart 90(5), 556–562 (2004). [CrossRef] [PubMed]
  20. H. J. Ko, W. Tan, R. Stack, and S. A. Boppart, “Optical coherence elastography of engineered and developing tissue,” Tissue Eng. 12(1), 63–73 (2006). [CrossRef] [PubMed]
  21. R. K. Wang, S. J. Kirkpatrick, and M. Hinds, “Phase-sensitive optical coherence elastography for mapping tissue microstrains in real time,” Appl. Phys. Lett. 90(16), 164105 (2007). [CrossRef]
  22. S. J. Kirkpatrick, R. K. Wang, and D. D. Duncan, “OCT-based elastography for large and small deformations,” Opt. Express 14(24), 11585–11597 (2006). [CrossRef] [PubMed]
  23. A. L. Oldenburg, J. R. Gunther, and S. A. Boppart, “Imaging magnetically labeled cells with magnetomotive optical coherence tomography,” Opt. Lett. 30(7), 747–749 (2005). [CrossRef] [PubMed]
  24. E. P. Furlani, “Magnetophoretic separation of blood cells at the microscale,” J. Phys. D Appl. Phys. 40(5), 1313–1319 (2007). [CrossRef]
  25. R. Leitgeb, C. K. Hitzenberger, and A. F. Fercher, “Performance of fourier domain vs. time domain optical coherence tomography,” Opt. Express 11(8), 889–894 (2003). [CrossRef] [PubMed]
  26. A. L. Oldenburg, F. J. J. Toublan, K. S. Suslick, A. Wei, and S. A. Boppart, “Magnetomotive contrast for in vivo optical coherence tomography,” Opt. Express 13(17), 6597–6614 (2005). [CrossRef] [PubMed]
  27. V. Crecea, A. L. Oldenburg, T. S. Ralston, and S. A. Boppart, “Phase-resolved spectral-domain magnetomotive optical coherence tomography,” Proc. SPIE 6429, 64291X (2007). [CrossRef]
  28. A. L. Oldenburg, V. Crecea, S. A. Rinne, and S. A. Boppart, “Phase-resolved magnetomotive OCT for imaging nanomolar concentrations of magnetic nanoparticles in tissues,” Opt. Express 16(15), 11525–11539 (2008). [PubMed]
  29. D. C. Adler, R. Huber, and J. G. Fujimoto, “Phase-sensitive optical coherence tomography at up to 370,000 lines per second using buffered Fourier domain mode-locked lasers,” Opt. Lett. 32(6), 626–628 (2007). [CrossRef] [PubMed]
  30. A. M. Zysk, E. J. Chaney, and S. A. Boppart, “Refractive index of carcinogen-induced rat mammary tumours,” Phys. Med. Biol. 51(9), 2165–2177 (2006). [CrossRef] [PubMed]
  31. D. Valtorta and E. Mazza, “Dynamic measurement of soft tissue viscoelastic properties with a torsional resonator device,” Med. Image Anal. 9(5), 481–490 (2005). [CrossRef] [PubMed]
  32. X. Liang, A. L. Oldenburg, V. Crecea, E. J. Chaney, and S. A. Boppart, “Optical micro-scale mapping of dynamic biomechanical tissue properties,” Opt. Express 16(15), 11052–11065 (2008). [CrossRef] [PubMed]
  33. A. Samani, J. Bishop, C. Luginbuhl, and D. B. Plewes, “Measuring the elastic modulus of ex vivo small tissue samples,” Phys. Med. Biol. 48(14), 2183–2198 (2003). [CrossRef] [PubMed]
  34. P. Agache, and P. Humbert, Measuring the skin (Springer-Verlag, 2004).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited