OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 17, Iss. 25 — Dec. 7, 2009
  • pp: 23137–23146

Transition dynamics for multi-pulsing in mode-locked lasers

Brandon G. Bale, Khanh Kieu, J. Nathan Kutz, and Frank Wise  »View Author Affiliations

Optics Express, Vol. 17, Issue 25, pp. 23137-23146 (2009)

View Full Text Article

Enhanced HTML    Acrobat PDF (2151 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We consider experimentally and theoretically a refined parameter space in a laser system near the transition to multi-pulse mode-locking. Near the transition, the onset of instability is initiated by a Hopf (periodic) bifurcation. As the cavity energy is increased, the band of unstable, oscillatory modes generates a chaotic behavior between single- and multi-pulse operation. Both theory and experiment are in good qualitative agreement and they suggest that the phenomenon is of a universal nature in mode-locked lasers at the onset of multi-pulsing from N to N+1 pulses per round trip. This is the first theoretical and experimental characterization of the transition behavior, made possible by a highly refined tuning of the gain pump level.

© 2009 Optical Society of America

OCIS Codes
(060.5530) Fiber optics and optical communications : Pulse propagation and temporal solitons
(140.4050) Lasers and laser optics : Mode-locked lasers
(230.7370) Optical devices : Waveguides
(320.7090) Ultrafast optics : Ultrafast lasers

ToC Category:
Lasers and Laser Optics

Original Manuscript: October 26, 2009
Revised Manuscript: November 23, 2009
Manuscript Accepted: November 25, 2009
Published: December 2, 2009

Brandon G. Bale, Khanh Kieu, J. Nathan Kutz, and Frank Wise, "Transition dynamics for multi-pulsing in mode-locked lasers," Opt. Express 17, 23137-23146 (2009)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. H. A. Haus, "Mode-Locking of Lasers," IEEE J. Sel. Top. Quantum Electron. 6, 1173-1185 (2000). [CrossRef]
  2. J. N. Kutz, "Mode-locked Soliton Lasers," SIAM Review 48, 629-678 (2006). [CrossRef]
  3. J. N. Kutz, B. C. Collings, K. Bergman, and W. H. Knox, "Stabilized Pulse Spacing in Soliton Lasers Due to Gain Depletion and Recovery," IEEE J. Quantum Electron. 34, 1749-1757 (1998). [CrossRef]
  4. B. Collings, K. Berman, and W. H. Knox, "Stable multi-gigahertz pulse train formation in a short cavity passively harmonic mode-locked Er/Yb fiber laser," Opt. Lett. 23, 123-125 (1998). [CrossRef]
  5. M. E. Fermann and J. D. Minelly, "Cladding-pumped passive harmonically mode-locked fiber laser," Opt. Lett. 21, 970-972 (1996). [CrossRef] [PubMed]
  6. A. B. Grudinin, D. J. Richardson, and D. N. Payne, "Energy quantization in figure eight fibre laser," Electron. Lett. 28, 1391-1393 (1992). [CrossRef]
  7. M. J. Guy, P. U. Noske, A. Boskovic, and J. R. Taylor, "Femtosecond soliton generation in a praseodymium fluoride fiber laser," Opt. Lett. 19, 828-830 (1994). [CrossRef] [PubMed]
  8. M. Horowitz, C. R. Menyuk, T. F. Carruthers, and I. N. DulingIII, "Theoretical and experimental study of harmonically mode-locked fiber lasers for optical communication systems," J. Lightwave Technol. 18, 1565-1574 (2000). [CrossRef]
  9. R. P. Davey, N. Langford, and A. I. Ferguson, "Interacting solutions in erbium fibre laser," Electron. Lett. 27, 1257-1259 (1991). [CrossRef]
  10. M. J. Lederer, B. Luther-Davis, H. H. Tan, C. Jagadish, N. N. Akhmediev, and J. M. Soto-Crespo, "Multipulse operation of a Ti:Sapphire laser mode locked by an ion-implanted semiconductor saturable-absorber mirror," J. Opt. Soc. Am. B 16, 895-904 (1999). [CrossRef]
  11. Q. Xing, L. Chai, W. Zhang, and Ch.-yue Wang, "Regular, period-doubling, quasi-periodic, and chaotic behavior in a self-mode-locked Ti:sapphire laser," Opt. Commun. 162, 71-74 (1999). [CrossRef]
  12. M. Lai, J. Nicholson, and W. Rudolph, "Multiple pulse operation of a femtosecond Ti:sapphire laser," Opt. Commun. 142, 45-49 (1997). [CrossRef]
  13. Ch.-yue Wang, W. Zhang, K. F. Lee, and K. M. Yoo, "Pulse splitting in a self-mode-locking Ti:sapphire laser," Opt. Commun. 137, 89-92 (1997). [CrossRef]
  14. H. Kitano and S. Kinoshita, "Stable multipulse generation from a self-mode-locked Ti:sapphire laser," Opt. Commun. 157, 128-134 (1998). [CrossRef]
  15. A. N. Pilipetskii, E. A. Golovchenck, and C. R. Menyuk, "Acoustic effect in passively mode-locked fiber ring lasers," Opt. Lett. 20, 907-909 (1995). [CrossRef] [PubMed]
  16. S. Namiki, E. P. Ippen, H. Haus, and C. X. Yu, "Energy equations for mode-locked lasers," J. Opt. Soc. Am. B 14, 2099-2111 (1997). [CrossRef]
  17. J. M. Soto-Crespo, M. Grapinet, Ph. Grelu and N. Akhmediev, "Bifurcations and multiple period soliton pulsations in a passively mode-locked fiber laser," Phys. Rev. E 70, 066612 (2004). [CrossRef]
  18. J. N. Kutz and B. Sandstede, "Theory of passive harmonic mode-locking using wave-guide arrays," Opt. Express 16, 636-650 (2008). [CrossRef] [PubMed]
  19. T. Kapitula, J. N. Kutz, and B. Sandstede, "Stability of Pulses in the Master-Mode-locking Equation," J. Opt. Soc. Am. B 19, 740-746 (2002). [CrossRef]
  20. T. Kapitula, J. N. Kutz, and B. Sandstede, "The Evans function for nonlocal equations," Indiana J. Math. 53, 1095-1126 (2004). [CrossRef]
  21. B. G. Bale, J. N. Kutz and B. Sandstede, "Optimizing waveguide array mode-locking for high-power fiber lasers," IEEE J. Sel. Top. Quantum Electron. 15, 220-231 (2009). [CrossRef]
  22. J. Proctor and J. N. Kutz, "Theory and Simulation of Passive Mode-Locking with Waveguide Arrays," Opt. Lett. 13, 2013-2015 (2005). [CrossRef]
  23. J. P. Gordon, "Interaction forces among solitons in optical fibers," Opt. Lett. 8, 396-398 (1983). [CrossRef]
  24. K. Kieu and M. Mansuripur, "Femtosecond laser pulse generation with a fiber taper embedded in carbon nanotube/ polymer composite," Opt. Lett. 32, 2242-2244 (2007). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Supplementary Material

» Media 1: MOV (961 KB)     
» Media 2: MOV (1215 KB)     
» Media 3: MOV (1378 KB)     
» Media 4: MOV (2244 KB)     

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited