OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 17, Iss. 25 — Dec. 7, 2009
  • pp: 23147–23152

Real-time 2D parallel windowed Fourier transform for fringe pattern analysis using Graphics Processing Unit

Wenjing Gao, Nguyen Thi Thanh Huyen, Ho Sy Loi, and Qian Kemao  »View Author Affiliations

Optics Express, Vol. 17, Issue 25, pp. 23147-23152 (2009)

View Full Text Article

Enhanced HTML    Acrobat PDF (279 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



In optical interferometers, fringe projection systems, and synthetic aperture radars, fringe patterns are common outcomes and usually degraded by unavoidable noises. The presence of noises makes the phase extraction and phase unwrapping challenging. Windowed Fourier transform (WFT) based algorithms have been proven to be effective for fringe pattern analysis to various applications. However, the WFT-based algorithms are computationally expensive, prohibiting them from real-time applications. In this paper, we propose a fast parallel WFT-based library using graphics processing units and computer unified device architecture. Real-time WFT-based algorithms are achieved with 4 frames per second in processing 256×256 fringe patterns. Up to 132× speedup is obtained for WFT-based algorithms using NVIDIA GTX295 graphics card than sequential C in quad-core 2.5GHz Intel(R)Xeon(R) CPU E5420.

© 2009 OSA

OCIS Codes
(100.2650) Image processing : Fringe analysis
(070.2615) Fourier optics and signal processing : Frequency filtering
(090.5694) Holography : Real-time holography

ToC Category:
Image Processing

Original Manuscript: October 27, 2009
Manuscript Accepted: November 24, 2009
Published: December 2, 2009

Wenjing Gao, Nguyen Thi Thanh Huyen, Ho Sy Loi, and Qian Kemao, "Real-time 2D parallel windowed Fourier transform for fringe pattern analysis using Graphics Processing Unit," Opt. Express 17, 23147-23152 (2009)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. D. W. Robinson, and G. T. Reid, in Interferogram analysis: digital fringe pattern measurement techniques, (Bristol, England: Institute of Physics 1993)
  2. X. Su and W. Chen, “Fourier transform profilometry: a review,” Opt. Lasers Eng. 35(5), 263–284 (2001). [CrossRef]
  3. D. C. Ghiglia, and M. D. Pritt, in Two-dimensional phase unwrapping: theory, algorithms and software, (John Wiley& Sons, Inc 1998).
  4. Q. Kemao, “Two-dimensional windowed Fourier transform for fringe pattern analysis: Principles, applications and implementations,” Opt. Lasers Eng. 45(2), 304–317 (2007). [CrossRef]
  5. Q. Kemao, H. Wang, and W. Gao, “Windowed Fourier transform for fringe pattern analysis: theoretical analyses,” Appl. Opt. 47(29), 5408–5419 (2008). [CrossRef] [PubMed]
  6. Q. Kemao, W. Gao, and H. Wang, “Windowed Fourier-filtered and quality-guided phase-unwrapping algorithm,” Appl. Opt. 47(29), 5420–5428 (2008). [PubMed]
  7. H. Wang and Q. Kemao, “Frequency guided methods for demodulation of a single fringe pattern,” Opt. Express 17(17), 15118–15127 (2009), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-17-17-15118 . [CrossRef] [PubMed]
  8. W. Chen, X. Su, Y. P. Cao, Q. C. Zhang, and L. Q. Xiang, “Method for eliminating zero spectrum in Fourier transform profilometry,” Opt. Lasers Eng. 43(11), 1267–1276 (2005). [CrossRef]
  9. P. Hlubina, D. Ciprian, J. Lunacek, and R. Chlebus, “Phase retrieval from the spectral interference signal used to measure thickness of SiO2 thin film on silicon wafer,” Appl. Phys. B 88(3), 397–403 (2007). [CrossRef]
  10. M. P. Arroyo, J. A. Bea, N. Andres, R. Osta, and M. Doblare, “Force plate for measuring small animal forces by digital speckle pattern interferometry,” Proc. SPIE 6616, 66164D (2007). [CrossRef]
  11. P. Cheng, J. Hu, G. Zhang, L. Hou, B. Xu, and X. Wu, “Deformation measurements of dragonfly’s wings in free flight by using windowed Fourier transform,” Opt. Lasers Eng. 46(2), 157–161 (2008). [CrossRef]
  12. W. Zhao, Y. Chen, L. Shen, and A. Y. Yi, “Refractive index and dispersion variation in precision optical glass molding by computed tomography,” Appl. Opt. 48(19), 3588–3595 (2009). [CrossRef] [PubMed]
  13. Y. Fu, R. M. Groves, G. Pedrini, and W. Osten, “Kinematic and deformation parameter measurement by spatiotemporal analysis of an interferogram sequence,” Appl. Opt. 46(36), 8645–8655 (2007). [CrossRef] [PubMed]
  14. J. A. Gómez-Pedrero, J. A. Quiroga, and M. Servín, “Adaptive asynchronous algorithm for fringe pattern demodulation,” Appl. Opt. 47(21), 3954–3961 (2008). [CrossRef] [PubMed]
  15. S. Gorthi and P. Rastogi, “Numerical analysis of fringe patterns recorded in holographic interferometry using high-order ambiguity function,” J. Mod. Opt. 56(8), 949–954 (2009). [CrossRef]
  16. T. Ito, N. Masuda, K. Yoshimura, A. Shiraki, T. Shimobaba, and T. Sugie, “Special-purpose computer HORN-5 for a real-time electroholography,” Opt. Express 13(6), 1923–1932 (2005), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-13-6-1923 . [CrossRef] [PubMed]
  17. X. Wang, X. Peng, and T. Jindong, “Tree-dimensional digital imaging based on temporal phase unwrapping with parallel DSP,” Proc. SPIE 6723 (2007)
  18. T. W. Ng, K. T. Ang, and G. Argentini, “Temporal fringe pattern analysis with parallel computing,” Appl. Opt. 44(33), 7125–7129 (2005). [CrossRef] [PubMed]
  19. W. Gao, Q. Kemao, H. Wang, F. Lin, and H. S. Seah, “Parallel computing for fringe pattern processing: A multicore CPU approach in MATLAB® environment,” Opt. Lasers Eng. 47(11), 1286–1292 (2009). [CrossRef]
  20. N. Masuda, T. Ito, T. Tanaka, A. Shiraki, and T. Sugie, “Computer generated holography using a graphics processing unit,” Opt. Express 14(2), 603–608 (2006), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-14-2-603 . [CrossRef] [PubMed]
  21. T. Shimobaba, Y. Sato, J. Miura, M. Takenouchi, and T. Ito, “Real-time digital holographic microscopy using the graphic processing unit,” Opt. Express 16(16), 11776–11781 (2008), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-16-16-11776 . [CrossRef] [PubMed]
  22. S. Liu, P. Li, and Q. Luo, “Fast blood flow visualization of high-resolution laser speckle imaging data using graphics processing unit,” Opt. Express 16(19), 14321–14329 (2008), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-16-19-14321 . [CrossRef] [PubMed]
  23. C. V. Loan, Computational frameworks for the fast Fourier transform data, (SIAM 1992)
  24. NVIDIA, “Tesla GPU computing solutions,” 2009 GPU workshop, http://www.idre.ucla.edu/events/2009/gpu-workshop/
  25. R. Scott “Stream Processor Architecture,” Springer international series in Engineering and Computer Science, 664 (2001).
  26. NVIDIA, “ CUDA Programming Guide Version 2.3” (2009) http://developer.download.nvidia.com/compute/cuda/2_3/toolkit/docs/
  27. NVIDIA, “The CUDA compiler Driver NVCC” (2009) http://moss.csc.ncsu.edu/~mueller/cluster/nvidia/2.0/nvcc_2.0.pdf
  28. NVIDIA, “CUDA CUFFT library 2.3” (2009), http://www.nvidia.com/object/cuda_develop.html

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited