OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 17, Iss. 25 — Dec. 7, 2009
  • pp: 23160–23168

Quantum dot infrared photodetector enhanced by surface plasma wave excitation

S. C. Lee, S. Krishna, and S. R. J. Brueck  »View Author Affiliations


Optics Express, Vol. 17, Issue 25, pp. 23160-23168 (2009)
http://dx.doi.org/10.1364/OE.17.023160


View Full Text Article

Enhanced HTML    Acrobat PDF (510 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Up to a thirty-fold detectivity enhancement is achieved for an InAs quantum dot infrared photodetector (QDIP) by the excitation of surface plasma waves (SPWs) using a metal photonic crystal (MPC) integrated on top of the detector absorption region. The MPC is a 100 nm-thick gold film perforated with a 3.6 μm period square array of circular holes. A bare QDIP shows a bias-tunable broadband response from ~ 6 to 10 μm associated with the quantum confined Stark (QCS) effect. On the other hand, an MPC-integrated QDIP exhibits a dominant peak at 11.3 μm with a ~ 1 μm full width at half maximum and the highly enhanced detectivity at the bias polarity optimized for long wavelength. This is very different from the photoresponse of the bare QDIP but fully consistent with the direct coupling of the QDs in the detector absorption region to the SPWs excited at the MPC/detector interface by incident photons. The SPW resonance wavelength, λ, for the smallest coupling wavevector of the array in the MPC is close to 11.3 µm. The response also shows other SPW-coupled peaks: a significant peak at 8.1 μm (~λ/√2) and noticeable peaks at 5.8 μm (~λ/2) and 5.4 μm (~λ/√5) which correspond to higher-order coupling wavevectors. For the opposite bias, the MPC-integrated QDIP shows the highest response at 8.1 μm, providing a dramatic voltage tunability that is associated with QCS effect. SPWs propagate with TM (x, z) polarization along the MPC/detector interface. The enhanced detectivity is explained by these characteristics which increase both the effective absorption cross section with propagation and the interaction strength with TM polarization in the coupling to the QDs. Simulations show good qualitative agreement with the observed spectral behavior.

© 2009 OSA

OCIS Codes
(130.3060) Integrated optics : Infrared
(230.5160) Optical devices : Photodetectors
(240.6680) Optics at surfaces : Surface plasmons
(250.5403) Optoelectronics : Plasmonics
(310.6628) Thin films : Subwavelength structures, nanostructures

ToC Category:
Detectors

History
Original Manuscript: November 2, 2009
Revised Manuscript: November 23, 2009
Manuscript Accepted: November 23, 2009
Published: December 2, 2009

Citation
S. C. Lee, S. Krishna, and S. R. J. Brueck, "Quantum dot infrared photodetector enhanced by surface plasma wave excitation," Opt. Express 17, 23160-23168 (2009)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-17-25-23160


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. For a recent review see,C. Genet and T. W. Ebbesen, “Light in tiny holes,” Nature 445(7123), 39–46 (2007). [CrossRef] [PubMed]
  2. E. Cubukcu, E. A. Kort, K. B. Crozier, and F. Capasso, “Plasmonic laser antenna,” Appl. Phys. Lett. 89(9), 093120 (2006). [CrossRef]
  3. R. F. Oulton, V. J. Sorger, T. Zentgraf, R.-M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature 461(7264), 629–632 (2009). [CrossRef] [PubMed]
  4. S. R. J. Brueck, V. Diadiuk, T. Jones, and W. Lenth, “Enhanced quantum efficiency internal photoemission detectors by grating coupling to surface plasma waves,” Appl. Phys. Lett. 46(10), 915–917 (1985). [CrossRef]
  5. A. Sellai and P. Dawson, “Quantum efficiency in GaAs Schottky photodetectors with enhancement due to surface plasmon excitations,” Solid-State Electron. 46(1), 29–33 (2002). [CrossRef]
  6. Z. Yu, G. Veronis, S. Fan, and M. L. Brongersma, “Design of midinfrared photodetectors enhanced by surface plasmons on grating structures,” Appl. Phys. Lett. 89(15), 151116 (2006). [CrossRef]
  7. S. C. Lee, E. Plis, S. Krishna, and S. R. J. Brueck, “Mid-infrared transmission enhancement through sub-wavelength metal hole array using impedance-matching dielectric layer,” Electron. Lett. 45(12), 643–645 (2009). [CrossRef]
  8. D. Okamoto, J. Fijikata, K. Nishi, and K. Ohashi, “Numerical studies of near-infrared photodetectors with surface plasmon antennas for optical communications,” Jpn. J. Appl. Phys. 47(4), 2921–2923 (2008). [CrossRef]
  9. G. Vane and A. F. H. Goetz, “Terrestrial imaging spectroscopy,” Remote Sens. Environ. 24(1), 1–29 (1988). [CrossRef]
  10. J. P. Kerekes, M. K. Griffin, J. E. Baum, and K. E. Farrar, “Modeling of LWIR hyperspectral system performance for surface object and effluent detection applications.” Proc. SPIE 4381, 348 – 359 (2001).
  11. D. Manolakis and G. A. Shaw, “Detection algorithms for hyperspectral imaging applications,” IEEE Signal Process. Mag. 19(1), 29–43 (2002). [CrossRef]
  12. A. C. Goldberg, T. Fischer, and Z. I. Derzko, “Application of dual band infrared focal plane arrays to tactical and strategic military problems,” Proc. SPIE 4480, 500 – 514 (2002).
  13. E. P. G. Smith, E. A. Patten, P. M. Goetz, G. M. Venzor, J. A. Roth, B. Z. Nosho, J. D. Benson, A. J. Stoltz, J. B. Varesi, J. E. Jensen, S. M. Johnson, and W. A. Radford, “Fabrication and Characterization of Two-Color Midwavelength/Long Wavelength HgCdTe Infrared Detectors,” J. Electron. Mater. 35(6), 1145–1152 (2006). [CrossRef]
  14. W. R. Bell, “MTI: overview,” Proc. SPIE 4381, 173–183 (2001).
  15. H. Raether, Surface Plasmons (Springer, 1988), p5–6.
  16. R. Qiang, R. L. Chen, and J. Chen, “Modeling electrical properties of fold films at infrared frequency using FDTD method,” Int. J. Infrared Millim. Waves 25(8), 1263–1270 (2004). [CrossRef]
  17. S. Krishna, S. Raghavan, G. von Winckel, A. Stintz, G. Ariyawansa, S. G. Matsik, and A. G. U. Perera, “Three-color (λp1~3.8 μm, λp2~ 8.5 μm and λp3~23.2 μm) InAs/InGaAs quantum-dots-in-a-well detector,” Appl. Phys. Lett. 83(14), 2745–2747 (2003). [CrossRef]
  18. S. Krishna, D. Forman, S. Annamalai, P. Dowd, P. Varangis, T. Tumolillo, A. Gray, J. Zilko, K. Sun, M. Liu, J. Campbell, and D. Carothers, “Demonstration of a 320 x 256 Two-Color Focal Plane Array Using InAs/InGaAs Quantum Dots in a Well Detectors,” Appl. Phys. Lett. 86(19), 193501 (2005). [CrossRef]
  19. E. L. Dereniak and G. D. Boreman, Infrared detectors and systems (Wiley 1996), p208.
  20. These values are lower than previously reported data. This is partly because the crosstalk between neighbor devices and the extra absorption by residual IR have been minimized for precise comparison between the two devices.
  21. B. K. Minhas, W. Fan, K. Agi, S. R. J. Brueck, and K. J. Malloy, “Metallic inductive and capacitive grids: theory and experiment,” J. Opt. Soc. Am. A 19(7), 1352–1259 (2002). [CrossRef]
  22. In RCWA, the propagation length, and the transverse penetration depth below, the dielectric constant of gold was calculated from a Drude model with bulk plasma and scattering frequencies [Ordal et al., Appl. Opt. 22, 1099 (1983).]. The low-temperature refractive index of GaAs ~ 3.2 for the wavelengths of interest in this work was taken for εd' of the QDIP material [J. S. Blakemore, J. Appl. Phys. 62, 4528 (1987).].
  23. S. J. Chua, S. J. Xu, X. H. Zhang, X. C. Wang, T. Mei, W. J. Fan, C. H. Wang, J. Jiang, and X. G. Xie, “Polarization dependence of intraband absorption in self-organized quantum dots,” Appl. Phys. Lett. 73(14), 1997–1999 (1998). [CrossRef]
  24. S. Sauvage, P. Boucaud, T. Brunhes, V. Immer, E. Finkman, and J.-M. Gerard, “Midinfrared absorption and photocurrent spectroscopy of InAs/GaAs self-assembled quantum dots,” Appl. Phys. Lett. 78(16), 2327–2329 (2001). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited