OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 17, Iss. 25 — Dec. 7, 2009
  • pp: 23265–23271

Ultra-low-threshold Er:Yb sol-gel microlaser on silicon

Hsiu-Sheng Hsu, Can Cai, and Andrea M. Armani  »View Author Affiliations

Optics Express, Vol. 17, Issue 25, pp. 23265-23271 (2009)

View Full Text Article

Enhanced HTML    Acrobat PDF (1042 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Ultra-low threshold lasers which operate in the telecommunications band and which can be integrated with other CMOS compatible elements have numerous applications in satellite communications, biochemical detection and optical computing. To achieve sub-mW lasing thresholds, it is necessary to optimize both the gain medium and the pump method. One of the most promising methods is to use rare-earth ions in a co- or tri-dopant configuration, where the lasing of the primary dopant is enhanced by the secondary one, thus improving the efficiency of the overall system. Here, we demonstrate an Erbium:Ytterbium co-doped microcavity-based laser which is lithographically fabricated on a silicon substrate. The quality factor and pump threshold are experimentally determined for a series of erbium and ytterbium doping concentrations, verifying the inter-dependent relationship between the two dopants. The lasing threshold of the optimized device is 4.2 μW.

© 2009 OSA

OCIS Codes
(160.5690) Materials : Rare-earth-doped materials
(140.3948) Lasers and laser optics : Microcavity devices

ToC Category:
Lasers and Laser Optics

Original Manuscript: October 30, 2009
Revised Manuscript: December 1, 2009
Manuscript Accepted: December 2, 2009
Published: December 3, 2009

Hsiu-Sheng Hsu, Can Cai, and Andrea M. Armani, "Ultra-low-threshold Er:Yb sol-gel microlaser on silicon," Opt. Express 17, 23265-23271 (2009)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. Yang and L. J. Guo, “Optical sensors based on active microcavities,” IEEE J. Sel. Top. Quantum Electron. 12(1), 143–147 (2006). [CrossRef]
  2. C. Monat, P. Domachuk, and B. J. Eggleton, “Integrated optofluidics: A new river of light,” Nat. Photonics 1(2), 106–114 (2007). [CrossRef]
  3. M. Guelman, A. Kogan, A. Kazarian, A. Livne, M. Orenstein, H. Michalik, and S. Arnon, “Acquisition and pointing control for inter-satellite laser communications,” IEEE Trans. Aerosp. Electron. Syst. 40(4), 1239–1248 (2004). [CrossRef]
  4. Y. Jeong, C. Alegria, J. K. Sahu, L. Fu, M. Ibsen, C. Codemard, M. R. Mokhtar, and J. Nilsson, “A 43-W C-band tunable narrow-linewidth erbium-ytterbium codoped large-core fiber laser,” IEEE Photon. Technol. Lett. 16(3), 756–758 (2004). [CrossRef]
  5. G. T. Reed, “Device physics: the optical age of silicon,” Nature 427(6975), 595–596 (2004). [CrossRef] [PubMed]
  6. J. Cousin, P. Masselin, W. Chen, D. Boucher, S. Kassi, D. Romanini, and P. Szriftgiser, “Application of a continuous-wave tunable erbium-doped fiber laser to molecular spectroscopy in the near infrared,” Appl. Phys. B 83(2), 261–266 (2006). [CrossRef]
  7. P. Laporta, S. Taccheo, S. Longhi, C. Svelto, and P. DeNatale, “Frequency locking of tunable Er:Yb microlasers to absorption lines of (C2H2)-C-13 in the 1540-1550 nm wavelength interval,” Appl. Phys. Lett. 71(19), 2731–2733 (1997). [CrossRef]
  8. M. Ferrera, L. Razzari, D. Duchesne, R. Morandotti, Z. Yang, M. Liscidini, J. E. Sipe, S. Chu, B. E. Little, and D. J. Moss, “Low-power continuous-wave nonlinear optics in doped silica glass integrated waveguide structures,” Nat. Photonics 2(12), 737–740 (2008). [CrossRef]
  9. H. S. Rong, S. B. Xu, Y. H. Kuo, V. Sih, O. Cohen, O. Raday, and M. Paniccia, “Low-threshold continuous-wave Raman silicon laser,” Nat. Photonics 1(4), 232–237 (2007). [CrossRef]
  10. P. Thilakan, G. Sasikala, and I. Suemune, “Fabrication and characterization of a high Q microdisc laser using InAs quantum dot active regions,” Nanotechnology 18(5), 055401 (2007). [CrossRef]
  11. H. Cao, J. Y. Xu, W. H. Xiang, Y. Ma, S. H. Chang, S. T. Ho, and G. S. Solomon, “Optically pumped InAs quantum dot microdisk lasers,” Appl. Phys. Lett. 76(24), 3519–3521 (2000). [CrossRef]
  12. A. F. Obaton, C. Parent, G. Le Flem, P. Thony, A. Brenier, and G. Boulon, “Yb3+-Er3+-codoped LaLiP4O12 glass: a new eye-safe laser at 1535 nm,” J. Alloy. Comp. 300-301(1-2), 123–130 (2000). [CrossRef]
  13. I. K. Battisha, “Visible up-conversion photoluminescence from IR diode-pumped SiO2-TiO2 nano-composite films heavily doped with Er3+-Yb3+ and Nd3+-Yb3+,” J. Non-Cryst. Solids 353(18-21), 1748–1754 (2007). [CrossRef]
  14. D. Milanese, M. Vota, Q. Chen, J. Xing, G. Liao, H. Gebavi, M. Ferraris, N. Coluccelli, and S. Taccheo, “Investigation of infrared emission and lifetime in Tm-doped 75TeO(2): 20ZnO: 5Na(2)O (mol%) glasses: Effect of Ho and Yb co-doping,” J. Non-Cryst. Solids 354(18), 1955–1961 (2008). [CrossRef]
  15. S. F. Li, Q. Y. Zhang, and Y. P. Lee, “Absorption and photoluminescence properties of Er-doped and Er/Yb codoped soda-silicate laser glasses,” J. Appl. Phys. 96(9), 4746–4750 (2004). [CrossRef]
  16. J. T. Kringlebotn, J. L. Archambault, L. Reekie, J. E. Townsend, G. G. Vienne, and D. N. Payne, “Highly-Efficient, Low-Noise Grating-Feedback Er3+-Yb3+ codoped Fiber Laser,” Electron. Lett. 30(12), 972–973 (1994). [CrossRef]
  17. C. Li, R Moncorge, J. C. Souriau, C. Borel, and C. Wyon, “Room-Temperature CW Laser Action of Y2SiO5-Yb3+, Er3+ at 1.57μm,” Opt. Commun. 107(1-2), 61–64 (1994). [CrossRef]
  18. Y. J. Chen, Y. F. Lin, X. H. Gong, Z. D. Luo, and Y. D. Huang, “1.1 W diode-pumped Er:Yb laser at 1520 nm,” Opt. Lett. 32(18), 2759–2761 (2007). [CrossRef] [PubMed]
  19. P. Urquhart, “Review of rare earth doped fibre lasers and amplifiers,” IEEE Proc. J. Optoelectronics, 135, 385–407 (1988). [CrossRef]
  20. M. J. F. Digonnet, Rare-earth-doped fiber lasers and amplifiers (Marcel Dekker, New York, 2001), Chap.3.
  21. K. Srinivasan, M. Borselli, O. Painter, A. Stintz, and S. Krishna, “Cavity Q, mode volume, and lasing threshold in small diameter AlGaAs microdisks with embedded quantum dots,” Opt. Express 14(3), 1094–1105 (2006). [CrossRef] [PubMed]
  22. M. L. Gorodetsky, A. A. Savchenkov, and V. S. Ilchenko, “Ultimate Q of optical microsphere resonators,” Opt. Lett. 21(7), 453–455 (1996). [CrossRef] [PubMed]
  23. S. X. Qian, J. B. Snow, H. M. Tzeng, and R. K. Chang, “Lasing Droplets: Highlighting the Liquid-Air Interface by Laser Emission,” Science 231(4737), 486–488 (1986). [CrossRef] [PubMed]
  24. V. Sandoghdar, F. Treussart, J. Hare, V. Lefèvre-Seguin, J.-M. Raimond, and S. Haroche, “Very low threshold whispering-gallery-mode microsphere laser,” Phys. Rev. A 54(3), R1777–R1780 (1996). [CrossRef] [PubMed]
  25. F. Lissillour, D. Messager, G. Stéphan, and P. Féron, “Whispering-gallery-mode laser at 1.56 mum excited by a fiber taper,” Opt. Lett. 26(14), 1051–1053 (2001). [CrossRef] [PubMed]
  26. L. Yang, T. Carmon, B. Min, S. M. Spillane, and K. J. Vahala, “Erbium-doped and Raman microlasers on a silicon chip fabricated by the sol-gel process,” Appl. Phys. Lett. 86(9), 3 (2005). [CrossRef]
  27. E. P. Ostby, L. Yang, and K. J. Vahala, “Ultralow-threshold Yb(3+):SiO(2) glass laser fabricated by the solgel process,” Opt. Lett. 32(18), 2650–2652 (2007). [CrossRef] [PubMed]
  28. B. Min, T. J. Kippenberg, L. Yang, K. J. Vahala, J. Kalkman, and A. Polman, “Erbium-implanted high-Q silica toroidal microcavity laser on a silicon chip,” Phys. Rev. A 70(3), 033803 (2004). [CrossRef]
  29. L. D. da Vila, L. Gomes, L. V. G. Tarelho, S. J. L. Ribeiro, and Y. Messadeq, “Mechanism of the Yb-Er energy transfer in fluorozirconate glass,” J. Appl. Phys. 93(7), 3873–3880 (2003). [CrossRef]
  30. P. Laporta, S. Taccheo, S. Longhi, O. Svelto, and C. Svelto, “Erbium-ytterbium microlasers: optical properties and lasing characteristics,” Opt. Mater. 11(2-3), 269–288 (1999). [CrossRef]
  31. A. Selvarajan and T. Srinivas, “Optical amplification and photosensitivity in sol-gel based waveguides,” IEEE J. Quantum Electron. 37(9), 1117–1126 (2001). [CrossRef]
  32. G. Kakarantzas, S. G. Leon-Saval, T. A. Birks, and P. S. J. Russell, “Low-loss deposition of solgel-derived silica films on tapered fibers,” Opt. Lett. 29(7), 694–696 (2004). [CrossRef] [PubMed]
  33. L. L. Yang, Y. S. Lai, J. S. Chen, P. H. Tsai, C. L. Chen, and C. J. Chang, “Compositional tailored sol-gel SiO2-TiO2 thin films: Crystallization, chemical bonding configuration, and optical properties,” J. Mater. Res. 20(11), 3141–3149 (2005). [CrossRef]
  34. D. K. Armani, T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, “Ultra-high-Q toroid microcavity on a chip,” Nature 421(6926), 925–928 (2003). [CrossRef] [PubMed]
  35. D. W. Vernooy, V. S. Ilchenko, H. Mabuchi, E. W. Streed, and H. J. Kimble, “High-Q measurements of fused-silica microspheres in the near infrared,” Opt. Lett. 23(4), 247–249 (1998). [CrossRef] [PubMed]
  36. M. Cai and K. Vahala, “Highly efficient hybrid fiber taper coupled microsphere laser,” Opt. Lett. 26(12), 884–886 (2001). [CrossRef] [PubMed]
  37. W. J. Miniscalco, “Erbium-doped Glasses for Fiber Amplifiers at 1500-nm,” J. Lightwave Technol. 9(2), 234–250 (1991). [CrossRef]
  38. K. Lu and N. K. Dutta, “Spectroscopic properties of Yb-doped silica glass,” J. Appl. Phys. 91(2), 576–581 (2002). [CrossRef]
  39. C. H. Dong, Y. F. Xiao, Z. F. Han, G. C. Guo, X. S. Jiang, L. M. Tong, C. Gu, and H. Ming, “Low-threshold microlaser in Er: Yb phosphate glass coated microsphere,” IEEE Photon. Technol. Lett. 20(5), 342–344 (2008). [CrossRef]
  40. Y. F. Xiao, C. H. Dong, C. L. Zou, Z. F. Han, L. Yang, and G. C. Guo, “Low-threshold microlaser in a high-Q asymmetrical microcavity,” Opt. Lett. 34(4), 509–511 (2009). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited