OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 17, Iss. 25 — Dec. 7, 2009
  • pp: 23272–23283

Automatic exposure control and estimation of effective system noise in diffuse fluorescence tomography

Dax L. Kepshire, Hamid Dehghani, Frederic Leblond, and Brian W. Pogue  »View Author Affiliations


Optics Express, Vol. 17, Issue 25, pp. 23272-23283 (2009)
http://dx.doi.org/10.1364/OE.17.023272


View Full Text Article

Enhanced HTML    Acrobat PDF (698 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A diffuse fluorescence tomography system, based upon time-correlated single photon counting, is presented with an automated algorithm to allow dynamic range variation through exposure control. This automated exposure control allows the upper and lower detection levels of fluorophore to be extended by an order of magnitude beyond the previously published performance and benefits in a slight decrease in system effective noise. The effective noise level is used as a metric to characterize the system performance, integrating both model-mismatch and calibration bias errors into a single parameter. This effective error is near 7% of the reconstructed fluorescent yield value, when imaging in just few minutes. Quantifying protoporphyrin IX concentrations down to 50 ng/ml is possible, for tumor-sized regions. This fluorophore has very low fluorescence yield, but high biological relevance for tumor imaging, given that it is produced in the mitochondria, and upregulated in many tumor types.

© 2009 OSA

OCIS Codes
(170.6960) Medical optics and biotechnology : Tomography
(170.2945) Medical optics and biotechnology : Illumination design

ToC Category:
Medical Optics and Biotechnology

History
Original Manuscript: September 10, 2009
Revised Manuscript: October 14, 2009
Manuscript Accepted: October 21, 2009
Published: December 3, 2009

Virtual Issues
Vol. 5, Iss. 1 Virtual Journal for Biomedical Optics

Citation
Dax L. Kepshire, Hamid Dehghani, Frederic Leblond, and Brian W. Pogue, "Automatic exposure control
and estimation of effective system noise
in diffuse fluorescence tomography," Opt. Express 17, 23272-23283 (2009)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-17-25-23272


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. M. A. O’Leary, D. A. Boas, X. D. Li, B. Chance, and A. G. Yodh, “Fluorescence lifetime imaging in turbid media,” Opt. Lett. 21(2), 158–160 (1996). [CrossRef] [PubMed]
  2. J. H. Chang, H. L. Graber, and R. L. Barbour, “Imaging of fluorescence in highly scattering media,” IEEE Trans. Biomed. Eng. 44(9), 810–822 (1997). [CrossRef] [PubMed]
  3. D. Y. Paithankar, A. U. Chen, B. W. Pogue, M. S. Patterson, and E. M. Sevick-Muraca, “Imaging of fluorescent yield and lifetime from multiply scattered light reemitted from random media,” Appl. Opt. 36(10), 2260–2272 (1997). [CrossRef] [PubMed]
  4. E. M. Sevick-Muraca, J. S. Reynolds, T. L. Troy, G. Lopez, and D. Y. Paithankar, “Fluorescence lifetime spectroscopic imaging with measurements of photon migration,” Ann. N. Y. Acad. Sci. 838(1 ADVANCES IN O), 46–57 (1998). [CrossRef] [PubMed]
  5. R. Roy and E. M. Sevick-Muraca, “Truncated Newton’s optimization scheme for absorption and fluorescence optical tomography: Part II Reconstruction from synthetic measurements,” Opt. Express 4(10), 372–382 (1999). [CrossRef] [PubMed]
  6. M. J. Eppstein, D. J. Hawrysz, A. Godavarty, and E. M. Sevick-Muraca, “Three-dimensional, Bayesian image reconstruction from sparse and noisy data sets: near-infrared fluorescence tomography,” Proc. Natl. Acad. Sci. U.S.A. 99(15), 9619–9624 (2002). [CrossRef] [PubMed]
  7. V. Ntziachristos, C. Bremer, E. E. Graves, J. Ripoll, and R. Weissleder, “In vivo tomographic imaging of near-infrared fluorescent probes,” Mol. Imaging 1(2), 82–88 (2002). [CrossRef] [PubMed]
  8. V. Ntziachristos, C. Bremer, C. Tung, and R. Weissleder, “Imaging cathepsin B up-regulation in HT-1080 tumor models using fluorescence-mediated molecular tomography (FMT),” Acad. Radiol. 9, 2:5323-5 (2002).
  9. V. Ntziachristos, J. Ripoll, E. Graves, and R. Weissleder, In-vivo molecular investigations of live tissues using diffracting sources, in Medical Image Computing and Computer-Assisted Intervention-Miccai 2002, Pt 1. p. 739–745 (2002).
  10. V. Ntziachristos, C. H. Tung, C. Bremer, and R. Weissleder, “Fluorescence molecular tomography resolves protease activity in vivo,” Nat. Med. 8(7), 757–761 (2002). [CrossRef] [PubMed]
  11. R. B. Schulz, J. Ripoll, and V. Ntziachristos, “Noncontact optical tomography of turbid media,” Opt. Lett. 28(18), 1701–1703 (2003). [CrossRef] [PubMed]
  12. H. Meyer, A. Garofalakis, G. Zacharakis, S. Psycharakis, C. Mamalaki, D. Kioussis, E. N. Economou, V. Ntziachristos, and J. Ripoll, “Noncontact optical imaging in mice with full angular coverage and automatic surface extraction,” Appl. Opt. 46(17), 3617–3627 (2007). [CrossRef] [PubMed]
  13. D. E. Sosnovik, M. Nahrendorf, N. Deliolanis, M. Novikov, E. Aikawa, L. Josephson, A. Rosenzweig, R. Weissleder, and V. Ntziachristos, “Fluorescence tomography and magnetic resonance imaging of myocardial macrophage infiltration in infarcted myocardium in vivo,” Circulation 115(11), 1384–1391 (2007). [CrossRef] [PubMed]
  14. M. J. Niedre, R. H. de Kleine, E. Aikawa, D. G. Kirsch, R. Weissleder, and V. Ntziachristos, “Early photon tomography allows fluorescence detection of lung carcinomas and disease progression in mice in vivo,” Proc. Natl. Acad. Sci. U.S.A. 105(49), 19126–19131 (2008). [CrossRef] [PubMed]
  15. S. C. Davis, B. W. Pogue, R. Springett, C. Leussler, P. Mazurkewitz, S. B. Tuttle, S. L. Gibbs-Strauss, S. S. Jiang, H. Dehghani, and K. D. Paulsen, “Magnetic resonance-coupled fluorescence tomography scanner for molecular imaging of tissue,” Rev. Sci. Instrum. 79(6), 064302 (2008). [CrossRef] [PubMed]
  16. D. Kepshire, S. L. Gibbs-Strauss, M. Hutchins, N. Mincu, F. Leblond, M. Khayat, H. Dehghani, S. Srinivasan, and B. W. Pogue, “Imaging of glioma tumor with endogenous fluorescence tomography,” Opt. Lett. 14, 030501 (2009).
  17. D. Kepshire, N. Mincu, M. Hutchins, J. Gruber, H. Dehghani, J. Hypnarowski, F. Leblond, M. Khayat, and B. W. Pogue, “A microcomputed tomography guided fluorescence tomography system for small animal molecular imaging,” Rev. Sci. Instrum. 80(4), 043701 (2009). [CrossRef] [PubMed]
  18. D. V. O'Connor and D. Phillips, “Time-correlated single photon counting,” Appl. Opt. 25, 460–463 (1986).
  19. R. Cubeddu, G. Canti, A. Pifferi, P. Taroni, and G. Valentini, “Fluorescence lifetime imaging of experimental tumors in hematoporphyrin derivative-sensitized mice,” Photochem. Photobiol. 66(2), 229–236 (1997). [CrossRef] [PubMed]
  20. V. Ntziachristos, X. H. Ma, and B. Chance, “Time-correlated single photon counting imager for simultaneous magnetic resonance and near-infrared mammography,” Rev. Sci. Instrum. 69(12), 4221–4233 (1998). [CrossRef]
  21. B. W. Pogue, X. Song, T. D. Tosteson, T. O. McBride, S. Jiang, and K. D. Paulsen, “Statistical analysis of nonlinearly reconstructed near-infrared tomographic images: Part I--Theory and simulations,” IEEE Trans. Med. Imaging 21(7), 755–763 (2002). [CrossRef] [PubMed]
  22. X. Song, B. W. Pogue, T. D. Tosteson, T. O. McBride, S. Jiang, and K. D. Paulsen, “Statistical analysis of nonlinearly reconstructed near-infrared tomographic images: Part II--Experimental interpretation,” IEEE Trans. Med. Imaging 21(7), 764–772 (2002). [CrossRef] [PubMed]
  23. X. Song, B. W. Pogue, H. Dehghani, S. Jiang, K. D. Paulsen, and T. D. Tosteson, “Receiver operating characteristic and location analysis of simulated near-infrared tomography images,” J. Biomed. Opt. 12(5), 054013 (2007). [CrossRef] [PubMed]
  24. W. Becker, “Advanced Time-Correlated Single Photon Counting Techniques,” Springer Ser. Chem. Phys. 81, 359 (2005).
  25. S. C. Davis, H. Dehghani, J. Wang, S. Jiang, B. W. Pogue, and K. D. Paulsen, “Image-guided diffuse optical fluorescence tomography implemented with Laplacian-type regularization,” Opt. Express 15(7), 4066–4082 (2007). [CrossRef] [PubMed]
  26. S. C. Davis, B. W. Pogue, H. Dehghani, and K. D. Paulsen, “Contrast-detail analysis characterizing diffuse optical fluorescence tomography image reconstruction,” J. Biomed. Opt. 10(5), 050501 (2005). [CrossRef] [PubMed]
  27. H. Dehghani, M. E. Eames, P. K. Yalavarthy, S. C. Davis, S. Srinivasan, C. M. Carpenter, B. W. Pogue, and K. D. Paulsen, “Near infrared optical tomography using NIRFAST: Algorithm for numerical model and image reconstruction”. Comm. Num. Meth. Eng., DOI: 10.1002/cnm.1162 (2008). [CrossRef]
  28. M. Bartels, A. Joshi, J. C. Rasmussen, W. Bangerth, and E. M. Sevick-Muraca, “Post image acquisition mitigation of excitation light leakage in patterned illumination based NIR fluorescence tomography,” 5th Int. Symposium Biomed. Imag (ISBI) 1239–1242, May 14–17 (2008).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited