OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 17, Iss. 25 — Dec. 7, 2009
  • pp: 23309–23315

Non-resonant wavelength modulation saturation spectroscopy in acetylene-filled hollow-core photonic bandgap fibres applied to modulation-free laser diode stabilisation

Pablo Pineda-Vadillo, Michael Lynch, Christy Charlton, John F. Donegan, and Vincent Weldon  »View Author Affiliations


Optics Express, Vol. 17, Issue 25, pp. 23309-23315 (2009)
http://dx.doi.org/10.1364/OE.17.023309


View Full Text Article

Enhanced HTML    Acrobat PDF (368 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

In this paper the application of Wavelength Modulation (WM) techniques to non-resonant saturation spectroscopy in acetylene-filled Hollow-Core Photonic Bandgap Fibres (HC-PBFs) and modulation-free Laser Diode (LD) frequency stabilisation is investigated. In the first part WM techniques are applied to non-resonant pump-probe saturation of acetylene overtone rotational transitions in a HC-PBF. A high-power DFB chip-on-carrier mounted LD is used in conjunction with a tuneable External Cavity Laser (ECL) and the main saturation parameters are characterized. In the second part a novel feedback system to stabilize the DFB emission wavelength based on the WM saturation results is implemented. Modulation-free locking of the DFB laser frequency to the narrow linewidth saturation feature is achieved for both constant and variable LD temperatures.

© 2009 OSA

OCIS Codes
(140.2020) Lasers and laser optics : Diode lasers
(190.4370) Nonlinear optics : Nonlinear optics, fibers
(300.6380) Spectroscopy : Spectroscopy, modulation
(140.3425) Lasers and laser optics : Laser stabilization
(280.4788) Remote sensing and sensors : Optical sensing and sensors
(060.5295) Fiber optics and optical communications : Photonic crystal fibers

ToC Category:
Lasers and Laser Optics

History
Original Manuscript: September 25, 2009
Revised Manuscript: November 28, 2009
Manuscript Accepted: November 29, 2009
Published: December 4, 2009

Citation
Pablo Pineda-Vadillo, Michael Lynch, Christy Charlton, John F. Donegan, and Vincent Weldon, "Non-resonant wavelength modulation saturation spectroscopy in acetylene-filled hollow-core photonic bandgap fibres applied to modulation-free laser diode stabilisation," Opt. Express 17, 23309-23315 (2009)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-17-25-23309


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. J. C. Knight, “Photonic crystal fibres,” Nature 424(6950), 847–851 (2003). [CrossRef] [PubMed]
  2. P. S. J. Russell, ““Photonic-Crystal Fibers,” Lightwave Technology,” Journalism 24, 4729–4749 (2006).
  3. J. M. Dudley and J. R. Taylor, “Ten years of nonlinear optics in photonic crystal fibre,” Nat. Photonics 3(2), 85–90 (2009). [CrossRef]
  4. J. B. Jensen, J. Riishede, J. Broengx, J. Laegsgaard, T. Tanggaard Larsen, T. Sorensen, K. Hougaard, E. Knudsen, S. B. Libori, and A. Bjarklev, “Photonic crystal fibers; fundamental properties and applications within sensors,” in Sensors, 2003. Proceedings of IEEE(2003), pp. 269–278 Vol.261.
  5. T. Ritari, J. Tuominen, H. Ludvigsen, J. Petersen, T. Sørensen, T. Hansen, and H. Simonsen, “Gas sensing using air-guiding photonic bandgap fibers,” Opt. Express 12(17), 4080–4087 (2004). [CrossRef] [PubMed]
  6. T. Ritari, H. Ludvigsen, and J. C. Petersen, “Photonic Bandgap Fibers in Gas Detection,” Spectroscopy 20, 30–34 (2005).
  7. A. M. Cubillas, J. Hald, and J. C. Petersen, “High resolution spectroscopy of ammonia in a hollow-core fiber,” Opt. Express 16(6), 3976–3985 (2008). [CrossRef] [PubMed]
  8. J. Henningsen, J. Hald, and J. C. Peterson, “Saturated absorption in acetylene and hydrogen cyanide in hollow-core photonic bandgap fibers,” Opt. Express 13(26), 10475–10482 (2005). [CrossRef] [PubMed]
  9. F. Benabid, F. Couny, J. C. Knight, T. A. Birks, and P. S. J. Russell, “Compact, stable and efficient all-fibre gas cells using hollow-core photonic crystal fibres,” Nature 434(7032), 488–491 (2005). [CrossRef] [PubMed]
  10. J. Tuominen, T. Ritari, H. Ludvigsen, and J. C. Petersen, “Gas filled photonic bandgap fibers as wavelength references,” Opt. Commun. 255(4-6), 272–277 (2005). [CrossRef]
  11. F. Couny, P. S. Light, F. Benabid, and P. S. J. Russell, “Electromagnetically induced transparency and saturable absorption in all-fiber devices based on 12C2H2-filled hollow-core photonic crystal fiber,” Opt. Commun. 263(1), 28–31 (2006). [CrossRef]
  12. J. C. Petersen, and J. Hald, “Frequency and wavelength standards based on gas filled HC-PBFs,” in Lasers and Electro-Optics, 2008 and 2008 Conference on Quantum Electronics and Laser Science. CLEO/QELS 2008. Conference on(2008), pp. 1–2.
  13. K. Nakagawa, M. de Labachelerie, Y. Awaji, and M. Kourogi, “Accurate optical frequency atlas of the 1.5 um bands of acetylene,” J. Opt. Soc. Am. B 13(12), 2708–2714 (1996). [CrossRef]
  14. P. Minutolo, C. Corsi, F. D’Amato, and M. De Rosa, “Self- and foreign-broadening and shift coefficients for C2H2 lines at 1.54 um,” Eur. Phys. J. D 17(2), 175–179 (2001). [CrossRef]
  15. C. S. Edwards, H. S. Margolis, G. P. Barwood, S. N. Lea, P. Gill, and W. R. C. Rowley, “High-accuracy frequency atlas of 13C2H2 in the 1.5 um region,” Appl. Phys. B 80(8), 977–983 (2005). [CrossRef]
  16. F. Benabid, P. Light, F. Couny, and P. Russell, “Electromagnetically-induced transparency grid in acetylene-filled hollow-core PCF,” Opt. Express 13(15), 5694–5703 (2005). [CrossRef] [PubMed]
  17. S. Ghosh, J. E. Sharping, D. G. Ouzounov, and A. L. Gaeta, “Resonant optical interactions with molecules confined in photonic band-gap fibers,” Phys. Rev. Lett. 94(9), 093902 (2005). [CrossRef] [PubMed]
  18. K. Knabe, R. Thapa, O. L. Weaver, B. R. Washburn, and K. L. Corwin, “Comparison of Saturated Absorption Spectra of Acetylene Gas Inside Photonic Bandgap Fibers,” in Tech. Digest, Symposium on Optical Fiber Measurements (SOFM 2006), Sep19–20,2006 (NIST Special Publication 1055, Boulder, CO, 2006), pp. 55–58.
  19. R. Thapa, K. Knabe, M. Faheem, A. Naweed, O. L. Weaver, and K. L. Corwin, “Saturated absorption spectroscopy of acetylene gas inside large-core photonic bandgap fiber,” Opt. Lett. 31(16), 2489–2491 (2006). [CrossRef] [PubMed]
  20. M. Labachelerie, K. Nakagawa, Y. Awaji, and M. Ohtsu, “High-frequency-stability laser at 1.5 µm using Doppler-free molecular lines,” Opt. Lett. 20(6), 572–574 (1995). [CrossRef] [PubMed]
  21. A. Onae, K. Okumura, J. Yoda, K. Nakagawa, A. Yamaguchi, M. Kourogi, K. Imai, and B. Widiyatomoko, “Toward an accurate frequency standard at 1.5 μm based on the acetylene overtone band transition,” Instrumentation and Measurement, IEEE Transactions on 48(2), 563–566 (1999). [CrossRef]
  22. J. E. Debs, N. P. Robins, A. Lance, M. B. Kruger, and J. D. Close, “Piezo-locking a diode laser with saturated absorption spectroscopy,” Appl. Opt. 47(28), 5163–5166 (2008). [CrossRef] [PubMed]
  23. C. I. Sukenik, H. C. Busch, and M. Shiddiq, “Modulation-free laser frequency stabilization and detuning,” Opt. Commun. 203(1-2), 133–137 (2002). [CrossRef]
  24. P. Balling, M. Fischer, P. Kubina, and R. Holzwarth, “Absolute frequency measurement of wavelength standard at 1542nm: acetylene stabilized DFB laser,” Opt. Express 13(23), 9196–9201 (2005). [CrossRef] [PubMed]
  25. P. Balling, and P. Křen, “Development of wavelength standard at 1542 nm: acetylene stabilized DFB laser,” in WDS'05 Proceedings of Contributed Papers: Part III - Physics, J. Šafránková, ed. (Matfyz press, Charles University, Prague, 2005), pp. 590–594.
  26. K. Nakagawa, Y. Sato, M. Musha, and K. Ueda, “Modulation-free acetylene-stabilized lasers at 1542 nm using modulation transfer spectroscopy,” Appl. Phys. B 80(4-5), 479–482 (2005). [CrossRef]
  27. M. J. Andrew, and K. Kevin, L. JinKang, T. Rajesh, T. Karl, C. Francois, S. L. Philip, B. Fetah, R. W. Brian, and L. C. Kristan, “Stability of Optical Frequency References Based on Acetylene-Filled Kagome-Structured Hollow Core Fiber,” in Frontiers in Optics(Optical Society of America, 2008), p. FWF7.
  28. K. Knabe, A. Jones, K. L. Corwin, F. Couny, P. S. Light, and F. Benabid, “Saturated absorption spectroscopy of C2H2 inside a hollow, large-core kagome photonic crystal fiber,” (Institute of Electrical and Electronics Engineers Inc., San Jose, CA, United states, 2008).
  29. J. M. Supplee, E. A. Whittaker, and W. Lenth, “Theoretical description of frequency modulation and wavelength modulation spectroscopy,” Appl. Opt. 33(27), 6294–6302 (1994). [CrossRef] [PubMed]
  30. NKT photonics, “HC-1550-02 fibre datasheet,” http://www.nktphotonics.com/side5334.html .
  31. C. N. Banwell, and E. M. McCash, “Chapter 3: Infra-Red Spectroscopy,” in Fundamentals of Molecular Spectroscopy (McGraw-Hill, 1994).
  32. O. Svelto, Principles of Lasers 4th Ed., Ch. 2, pp. 44–45 (Springer, 1998).
  33. K. Shimoda, High-Resolution Laser Spectroscopy, Ch.2, pp. 12–14 (Springer-Verlag, 1976).
  34. J. Elijah Kannatey-Asibu, “Broadening mechanisms,” in Principles of Laser Materials Processing, J. W. Sons, ed. (2009), pp. 90–92.
  35. P. F. Bernath, “Transit time broadening,” in Spectra of atoms and molecules, O. U. P. USA, ed. (2005), pp. 31–33.
  36. J. Hald, J. C. Petersen, and J. Henningsen, “Saturated optical absorption by slow molecules in hollow-core photonic band-gap fibers,” Phys. Rev. Lett. 98(21), 213902–213904 (2007). [CrossRef] [PubMed]
  37. T. O. P. T. I. C. A. Photonics, “Diode Laser Locking and Linewidth Narrowing,” http://www.toptica.com/products/itemlayer/177/Appl_1012_laser_locking_080917.pdf .

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited