OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 17, Iss. 25 — Dec. 7, 2009
  • pp: 23338–23343

Digital reconstruction of optically-induced potentials

Christopher Barsi and Jason W. Fleischer  »View Author Affiliations


Optics Express, Vol. 17, Issue 25, pp. 23338-23343 (2009)
http://dx.doi.org/10.1364/OE.17.023338


View Full Text Article

Enhanced HTML    Acrobat PDF (443 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The holographic reconstruction of optically-induced objects typically assumes that the object is axially thin. Here, we demonstrate a simple approach that works for axially thick objects which evolve dynamically. Results are verified by reconstructing linear scattering experiments in a self-defocusing photorefractive crystal.

© 2009 OSA

OCIS Codes
(100.3190) Image processing : Inverse problems
(190.5330) Nonlinear optics : Photorefractive optics
(090.1995) Holography : Digital holography

ToC Category:
Holography

History
Original Manuscript: August 13, 2009
Revised Manuscript: November 21, 2009
Manuscript Accepted: November 23, 2009
Published: December 4, 2009

Citation
Christopher Barsi and Jason W. Fleischer, "Digital reconstruction of optically-induced potentials," Opt. Express 17, 23338-23343 (2009)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-17-25-23338


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. S. Tzortzakis, B. Prade, M. Franco, and A. Mysyrowicz, “Time-evolution of the plasma channel at the trail of a self-guided IR femtosecond laser pulse in air,” Opt. Commun. 181(1-3), 123–127 (2000). [CrossRef]
  2. Z. Liu, M. Centurion, G. Panotopoulos, J. Hong, and D. Psaltis, “Holographic recording of fast events on a CCD camera,” Opt. Lett. 27(1), 22–24 (2002). [CrossRef] [PubMed]
  3. M. Centurion, Y. Pu, Z. Liu, D. Psaltis, and T. W. Hänsch, “Holographic recording of laser-induced plasma,” Opt. Lett. 29(7), 772–774 (2004). [CrossRef] [PubMed]
  4. E. R. Dufresne and D. G. Grier, “Optical tweezer arrays and optical substrates created with diffractive optics,” Rev. Sci. Instrum. 69(5), 1974–1977 (1998). [CrossRef]
  5. D. G. Grier, “A revolution in optical manipulation,” Nature 424(6950), 810–816 (2003). [CrossRef] [PubMed]
  6. Y. Roichman, I. Cholis, and D. G. Grier, “Volumetric imaging of holographic optical traps,” Opt. Express 14(22), 10907–10912 (2006), http://www.opticsinfobase.org/abstract.cfm?URI=oe-14-22-10907 . [CrossRef] [PubMed]
  7. N. K. Efremidis, S. Sears, D. N. Christodoulides, J. W. Fleischer, and M. Segev, “Discrete solitons in photorefractive optically induced photonic lattices,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 66( 2), 046602 (2002). [CrossRef] [PubMed]
  8. J. W. Fleischer, T. Carmon, M. Segev, N. K. Efremidis, and D. N. Christodoulides, “Observation of discrete solitons in optically induced real time waveguide arrays,” Phys. Rev. Lett. 90(2), 023902 (2003). [CrossRef] [PubMed]
  9. J. W. Fleischer, M. Segev, N. K. Efremidis, and D. N. Christodoulides, “Observation of two-dimensional discrete solitons in optically induced nonlinear photonic lattices,” Nature 422(6928), 147–150 (2003). [CrossRef] [PubMed]
  10. D. Gabor, “A new microscopic principle,” Nature 161(4098), 777–778 (1948). [CrossRef] [PubMed]
  11. T. Balciunas, A. Melninkaitis, G. Tamosauskas, and V. Sirutkaitis, “Time-resolved off-axis digital holography for characterization of ultrafast phenomena in water,” Opt. Lett. 33(1), 58–60 (2008). [CrossRef] [PubMed]
  12. T. Kreis, Handbook of Holographic Interferometry: Optical and Digital Methods (Wiley-VCH, Weinheim, Germany, 2005).
  13. M. Sheik-Bahae, A. A. Said, T.-H. Wei, D. J. Hagan, and E. W. Van Stryland, “Sensitive measurement of optical nonlinearities using a single beam,” IEEE J. Quantum Electron. 26(4), 760–769 (1990). [CrossRef]
  14. M. Sheik-Bahae, A. A. Said, D. J. Hagan, M. J. Soileau, and E. W. Van Stryland, “Nonlinear refraction and optical limiting in thick media,” Opt. Eng. 30, 1228–1235 (1991). [CrossRef]
  15. J. A. Hermann and R. G. McDuff, “Analysis of spatial scanning with thick optically nonlinear media,” J. Opt. Soc. Am. B 10(11), 2056–2064 (1993). [CrossRef]
  16. C. Barsi, W. Wan, and J. W. Fleischer, “Imaging through nonlinear media via digital holography,” Nat. Photonics 3(4), 211–215 (2009). [CrossRef]
  17. M. Tsang, D. Psaltis, and F. G. Omenetto, “Reverse propagation of femtosecond pulses in optical fibers,” Opt. Lett. 28(20), 1873–1875 (2003). [CrossRef] [PubMed]
  18. U. Schnars and W. P. O. Jüptner, “Digital recording and numerical reconstruction of holograms,” Meas. Sci. Technol. 13(9), R85–R101 (2002). [CrossRef]
  19. I. Yamaguchi and T. Zhang, “Phase-shifting digital holography,” Opt. Lett. 22(16), 1268–1270 (1997). [CrossRef] [PubMed]
  20. W. Wan, S. Jia, and J. W. Fleischer, “Dispersive, superfluid-like shock waves in nonlinear optics,” Nat. Phys. 3(1), 46–51 (2007). [CrossRef]
  21. N. V. Kukhtarev, V. B. Markov, S. G. Odulov, M. S. Soskin, and V. L. Vinetskii, “Holographic storage in Electrooptic Crystals I: Steady-State,” Ferroelectrics 22, 949–960 (1979). [CrossRef]
  22. N. Ghofraniha, C. Conti, G. Ruocco, and S. Trillo, “Shocks in nonlocal media,” Phys. Rev. Lett. 99(4), 043903 (2007). [CrossRef] [PubMed]
  23. C. Barsi, W. Wan, C. Sun, and J. W. Fleischer, “Dispersive shock waves with nonlocal nonlinearity,” Opt. Lett. 32(20), 2930–2932 (2007). [CrossRef] [PubMed]
  24. A. Ciattoni, B. Crosignani, and P. Di Porto, “Vectorial free-space optical propagation: a simple approach for generating all-order nonparaxial corrections,” Opt. Commun. 177(1-6), 9–13 (2000). [CrossRef]
  25. S. Blair, “Nonparaxial one-dimensional spatial solitons,” Chaos 10(3), 570–583 (2000). [CrossRef] [PubMed]
  26. M. Matuszewski, W. Wasilewski, M. Trippenbach, and Y. B. Band, “Self-consistent treatment of the full vectorial nonlinear optical pulse propagation equation in an isotropic medium,” Opt. Commun. 221(4-6), 337–351 (2003). [CrossRef]
  27. S. I. Bozhevolnyi and B. Vohnsen, “Near-field optical holography,” Phys. Rev. Lett. 77(16), 3351–3354 (1996). [CrossRef] [PubMed]
  28. B. Deutsch, R. Hillenbrand, and L. Novotny, “Near-field amplitude and phase recovery using phase-shifting interferometry,” Opt. Express 16(2), 494–501 (2008). [CrossRef] [PubMed]
  29. W. J. Tomlinson, J. P. Gordon, P. W. Smith, and A. E. Kaplan, “Reflection of a Gaussian beam at a nonlinear interface,” Appl. Opt. 21(11), 2041–2051 (1982). [CrossRef] [PubMed]
  30. O. Emile, T. Galstyan, F. Bretenaker, F. Bretenaker, and A Le Floch, “Measurement of the nonlinear Goos-Hänchen effect for Gaussian optical beams,” Phys. Rev. Lett. 75(8), 1511–1513 (1995). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited