OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 17, Iss. 25 — Dec. 7, 2009
  • pp: 23344–23349

High-efficiency, high-power and low threshold Yb3+:YAG ceramic laser

Angela Pirri, Daniele Alderighi, Guido Toci, and Matteo Vannini  »View Author Affiliations

Optics Express, Vol. 17, Issue 25, pp. 23344-23349 (2009)

View Full Text Article

Enhanced HTML    Acrobat PDF (277 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We present a high-power, high-efficiency and low threshold laser prototype based on doped ceramic Yb3+:YAG. We achieved an output power of 9 W with a slope efficiency of 73% and a threshold of 1 W at 1030 nm in quasi-Continuous Wave (QCW). Moreover, we obtained an output power 7.7 W with a slope efficiency of 60% in Continuous Wave (CW). Finally, a characterization of a low losses tunable cavity for several laser wavelengths with an output power exceeding 5 W is reported.

© 2009 OSA

OCIS Codes
(140.0140) Lasers and laser optics : Lasers and laser optics
(140.3480) Lasers and laser optics : Lasers, diode-pumped
(140.3580) Lasers and laser optics : Lasers, solid-state
(160.3380) Materials : Laser materials
(140.3615) Lasers and laser optics : Lasers, ytterbium

ToC Category:
Lasers and Laser Optics

Original Manuscript: August 6, 2009
Revised Manuscript: September 16, 2009
Manuscript Accepted: September 22, 2009
Published: December 4, 2009

Angela Pirri, Daniele Alderighi, Guido Toci, and Matteo Vannini, "High-efficiency, high-power and low threshold Yb3+:YAG ceramic laser," Opt. Express 17, 23344-23349 (2009)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. A. Lucca, G. Debourg, M. Jacquemet, F. Druon, F. Balembois, P. Georges, P. Camy, J. L. Doualan, and R. Moncorgé, “High-power diode-pumped Yb3+:CaF2 femtosecond laser,” Opt. Lett. 29(23), 2767–2769 (2004). [CrossRef] [PubMed]
  2. U. Griebner, S. Rivier, V. Petrov, M. Zorn, G. Erbert, M. Weyers, X. Mateos, M. Aguiló, J. Massons, and F. Díaz, “Passively mode-locked Yb:KLu(WO4)2 oscillators,” Opt. Express 13(9), 3465–3470 (2005). [CrossRef] [PubMed]
  3. V. E. Kisel, N. A. Tolstik, A. E. Troshin, N. V. Kuleshov, V. N. Matrosov, T. A. Matrosova, M. I. Kupchenko, F. Brunner, R. Paschotta, F. Morrier-Genoud, and U. Keller, “Spectroscopy and femtosecond laser performance of Yb3+:Gd0.64Y0.36VO crystal,” Appl. Phys. B 85(4), 581–584 (2006). [CrossRef]
  4. M. Vannini, G. Toci, D. Alderighi, D. Parisi, F. Cornacchia, and M. Tonelli, “High efficiency room temperature laser emission in heavily doped Yb:YLF,” Opt. Express 15(13), 7994–8002 (2007). [CrossRef] [PubMed]
  5. N. Coluccelli, G. Galzerano, L. Bonelli, A. Di Lieto, M. Tonelli, and P. Laporta, “Diode-pumped passively mode-locked Yb:YLF laser,” Opt. Express 16(5), 2922–2927 (2008). [CrossRef] [PubMed]
  6. J. Dong, P. Deng, Y. Liu, Y. Zhang, J. Xu, W. Chen, and X. Xie, “Passively Q-switched Yb:YAG laser with Cr4+:YAG as saturable absorber,” Appl. Opt. 40(24), 4303–4307 (2001). [CrossRef]
  7. G. J. Spühler, R. Paschotta, M. P. Kullberg, M. Graf, M. Moser, E. Mix, G. Huber, C. Harder, and U. Keller, “A passively Q-switched Yb:YAG microchip laser,” Appl. Phys. B 72, 285–287 (2001).
  8. A. A. Kaminskii, M. Sh. Akchurin, R. V. Gainutdinov, K. Takaichi, A. Shirakava, H. Yagi, T. Yanagitani, and K. Ueda, “Microhardness and Fracture Toughness of Y2O3- and Y3Al5O12-Based Nanocrystalline Laser Ceramics,” Crystallogr. Rep. 50(5), 869–873 (2005). [CrossRef]
  9. K. Takaichi, H. Yagi, J. Lu, A. Skirakawa, K. Ueda, and T. Yanagitani, “Yb3+doped Y3Al5O12 ceramics a new solid-state laser material,” Phys. Status Solid A 200(1), R5–R7 (2003). [CrossRef]
  10. J. Kong, D. Y. Tang, B. Zhao, J. Lu, K. Ueda, H. Yagi, and T. Yanagitani, “9.2-W diode-end-pumped Yb:Y2O3 ceramic laser,” Appl. Phys. Lett. 86(16), 1–3 (2005). [CrossRef]
  11. J. Kong, D. Y. Tang, C. C. Chan, J. Lu, K. Ueda, H. Yagi, and T. Yanagitani, “High-efficiency 1040 and 1078 nm laser emission of a Yb:Y2O3 ceramic laser with 976 nm diode pumping,” Opt. Lett. 32(3), 247–249 (2007). [CrossRef] [PubMed]
  12. M. Tokurakawa, A. Shirakawa, K. Ueda, H. Yagi, S. Hosokawa, T. Yanagitani, and A. A. Kaminskii, “Diode-pumped 65 fs Kerr-lens mode-locked Yb(3+):Lu(2)O(3) and nondoped Y(2)O(3) combined ceramic laser,” Opt. Lett. 33(12), 1380–1382 (2008). [CrossRef] [PubMed]
  13. M. Tsunekane and T. Taira, “High-power operation of diode edge-pumped, composite all-ceramic Yb:Y3Al5O12 microchip laser,” Appl. Phys. Lett. 90(12), 121101–121103 (2007). [CrossRef]
  14. S. Nakamura, H. Yoshioka, Y. Matsubara, T. Ogawa, and S. Wada, “Efficient tunable Yb:YAG ceramic laser,” Opt. Commun. 281(17), 4411–4414 (2008). [CrossRef]
  15. S. Nakamura, H. Yoshioka, Y. Matsubara, T. Ogawa, and S. Wada, “Broadly Tunable Yb3+-Doped Y3Al5O12 Ceramic Laser at Room Temperature,” Jpn. J. Appl. Phys. 48(6), 1–3 (2009). [CrossRef]
  16. J. Dong, K. Ueda, A. Shirakawa, H. Tagi, T. Yanagitani, and A. A. Kaminskii, “Composite Yb:YAG/Cr4+:YAG ceramics picosecond microchip lasers,” Opt. Express 15(22), 14516–14523 (2007). [CrossRef] [PubMed]
  17. H. Yoshioka, S. Nakamura, T. Okawa, and S. Wada, “Diode-pumped mode-locked Yb:YAG ceramic laser,” Opt. Express 17(11), 8919–8925 (2009). [CrossRef] [PubMed]
  18. C. Hönninger, R. Paschotta, M. Graf, F. Morier-Genoud, G. Zhang, M. Moser, S. Biswal, J. Nees, A. Braun, G. A. Mourou, I. Johannsen, A. Giesen, W. Seeber, and U. Keller, “Ultrafast ytterbium-doped bulk lasers and laser amplifiers,” Appl. Phys. B 69, 3–17 (1999). [CrossRef]
  19. S. Chénais, F. Balembois, F. Druon, G. Lucas-Leclin, and P. Georges, “Thermal Lensing in Diode-Pumped Ytterbium Lasers—Part I: Theoretical Analysis and Wavefront Measurements,” IEEE J. Quantum Electron. 40(9), 1217–1234 (2004). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited