OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 17, Iss. 26 — Dec. 21, 2009
  • pp: 23459–23467

Optical bistable devices based on guided-mode resonance in slab waveguide gratings

Quang Minh Ngo, Sangin Kim, Seok Ho Song, and Robert Magnusson  »View Author Affiliations


Optics Express, Vol. 17, Issue 26, pp. 23459-23467 (2009)
http://dx.doi.org/10.1364/OE.17.023459


View Full Text Article

Enhanced HTML    Acrobat PDF (803 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We investigate properties of nonlinear resonant gratings with emphasis on optical bistability. Slab waveguide gratings with various quality factors are designed and their characteristics analyzed with a finite-difference time-domain method. Considerable field enhancements are observed in the gratings and the performance compares favorably with metallic bistable devices. Bistabilitiy based on coupled gratings is also treated. Mechanically controllable switching intensity realized by varying a gap distance between two gratings is demonstrated. Resonant nonlinear elements in this work may find applications in all-optical information processing and optical switching, and our investigation on the dependence of the normalized switching intensity and the response time on quality factor will provide a general guide line for grating-based bistable device design.

© 2009 OSA

OCIS Codes
(050.1970) Diffraction and gratings : Diffractive optics
(130.1750) Integrated optics : Components
(190.1450) Nonlinear optics : Bistability
(310.2790) Thin films : Guided waves

ToC Category:
Integrated Optics

History
Original Manuscript: October 27, 2009
Revised Manuscript: December 1, 2009
Manuscript Accepted: December 4, 2009
Published: December 7, 2009

Citation
Quang Minh Ngo, Sangin Kim, Seok Ho Song, and Robert Magnusson, "Optical bistable devices based on guided-mode resonance in slab waveguide gratings," Opt. Express 17, 23459-23467 (2009)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-17-26-23459


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. H. M. Gibbs, Optical bistability: Controlling Light with Light (Academic, 1985).
  2. S. F. Mingaleev and Y. S. Kivshar, “Nonlinear transmission and light localization in photonic-crystal waveguides,” J. Opt. Soc. Am. B 19(9), 2241 (2002). [CrossRef]
  3. M. Soljacic, M. Ibanescu, S. G. Johnson, Y. Fink, and J. D. Joannopoulos, “Optimal bistable switching in nonlinear photonic crystals,” Phys. Rev. E 66, 055601(R) (2002). [CrossRef]
  4. M. Soljacić, C. Luo, J. D. Joannopoulos, and S. Fan, “Nonlinear photonic crystal microdevices for optical integration,” Opt. Lett. 28(8), 637–639 (2003). [CrossRef] [PubMed]
  5. S. Radic, N. George, and G. P. Agrawal, “Optical switching in λ/4-shifted nonlinear periodic structures,” Opt. Lett. 19(21), 1789–1791 (1994). [CrossRef] [PubMed]
  6. S. Jans, J. He, Z. R. Wasilewski, and M. Cada, “Low threshold optical bistable switching in an asymmetric λ/4-shifted distributed-feedback heterostructures,” Appl. Phys. Lett. 67(8), 1051 (1995). [CrossRef]
  7. R. Magnusson and S. S. Wang, “New principle for optical filters,” Appl. Phys. Lett. 61(9), 1022–1024 (1992). [CrossRef]
  8. Y. Ding and R. Magnusson, “Resonant leaky-mode spectral-band engineering and device applications,” Opt. Express 12(23), 5661–5674 (2004). [CrossRef] [PubMed]
  9. R. Magnusson and M. Shokooh-Saremi, “Physical basis for wideband resonant reflectors,” Opt. Express 16(5), 3456–3462 (2008). [CrossRef] [PubMed]
  10. K. J. Lee, R. Lacomb, B. Britton, M. Shokooh-Saremi, H. Silva, E. Donkor, Y. Ding, and R. Magnusson, “Silicon-layser guided-mode resonance polarizer with 40-nm bandwidth,” IEEE Photon. Technol. Lett. 20(22), 1857–1859 (2008). [CrossRef]
  11. D. Wawro, S. Tibuleac, and R. Magnusson, “Optical waveguide-mode resonant biosensors Optical,” Imaging Sensors and Systems for Homeland Security Applications, (Springer New York, 2006).
  12. H. Y. Song, S. Kim, and R. Magnusson, “Tunable guided-mode resonances in coupled gratings,” Opt. Express to be published [CrossRef] [PubMed]
  13. G. Purvinis, P. S. Priambodo, M. Pomerantz, M. Zhou, T. A. Maldonado, and R. Magnusson, “Second-harmonic generation in resonant waveguide gratings incorporating ionic self-assembled monolayer polymer films,” Opt. Lett. 29(10), 1108–1110 (2004). [CrossRef] [PubMed]
  14. P. Vincent, N. Paraire, M. Neviere, A. Koster, and R. Reinisch, “Grating in nonlinear optics and optical bistability,” J. Opt. Soc. Am. B 2(7), 1106 (1985). [CrossRef]
  15. I. A. Avrutskii and V. A. Sychugov, “Optical bistability in an excited nonlinear corrugated waveguide,” Sov. J. Quantum. Electron. 20(7), 856–859 (1990). [CrossRef]
  16. J. A. Porto, L. Martin-Moreno, and F. J. Garcia-Vidal, “Optical bistability in subwavelength slit apertures containing nonlinear media,” Phys. Rev. B 70, 081402(R) (2004). [CrossRef]
  17. C. Min, P. Wang, C. Chen, Y. Deng, Y. Lu, H. Ming, T. Ning, Y. Zhou, and G. Yang, “All-optical switching in subwavelength metallic grating structure containing nonlinear optical materials,” Opt. Lett. 33(8), 869–871 (2008). [CrossRef] [PubMed]
  18. A. Taflove, Computational Electrodynamics, (Artech House, Boston, 1995).
  19. A. Farjadpour, D. Roundy, A. Rodriguez, M. Ibanescu, P. Bermel, J. D. Joannopoulos, S. G. Johnson, and G. Burr, “Improving accuracy by subpixel smoothing in FDTD,” Opt. Lett. 31, 2972 (2006). [CrossRef] [PubMed]
  20. H. A. Haus, Waves and Field in Optoelectronics (Englewood Cliffs, NJ: Prentice-Hall, 1984).
  21. J. M. Laniel, N. Ho, and R. Vallee, “Nonlinear-refractive-index measurement in As2S3 channel waveguides by asymmetric self-phase modulation,” J. Opt. Soc. Am. B 22, 437 (2005). [CrossRef]
  22. I. A. Avrutsky and V. A. Sychugov, “Reflection of a beam of finite size from a corrugated waveguide,” J. Mod. Opt. 36(11), 1527–1539 (1989). [CrossRef]
  23. H. B. Liao, R. F. Xiao, H. Wang, K. S. Wong, and G. K. L. Wong, “Large third-order optical nonlinearity in Au:TiO2 composite films measured on a femtosecond time scale,” Appl. Phys. Lett. 72(15), 1817 (1998). [CrossRef]
  24. Y. Ding and R. Magnusson, “MEMS tunable resonant leaky mode filters,” IEEE Photon. Technol. Lett. 18(14), 1479–1481 (2006). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited