OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 17, Iss. 26 — Dec. 21, 2009
  • pp: 23488–23501

Investigation of stress induced by CO2 laser processing of fused silica optics for laser damage growth mitigation

Laurent Gallais, Philippe Cormont, and Jean-Luc Rullier  »View Author Affiliations


Optics Express, Vol. 17, Issue 26, pp. 23488-23501 (2009)
http://dx.doi.org/10.1364/OE.17.023488


View Full Text Article

Enhanced HTML    Acrobat PDF (764 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

‘Laser damage mitigation’ is a process developed to prevent the growth of nanosecond laser-initiated damage sites under successive irradiation. It consists of re-fusing the damage area with a CO2 laser. In this paper we investigate the stress field created around mitigated sites which could have an influence on the efficiency of the process. A numerical model of CO2 laser interaction with fused silica is developed. It takes into account laser energy absorption, heat transfer, thermally induced stress and birefringence. Residual stress near mitigated sites in fused silica samples is characterized with specific photoelastic methods and theoretical data are compared to experiments. The stress distribution and quantitative values of stress levels are obtained for sites treated with the CO2 laser in various conditions of energy deposition (beam size, pulse duration, incident power). The results provided evidence that the presence of birefringence/residual stress around the mitigated sites has an effect on their laser damage resistance.

© 2009 Optical Society of America

OCIS Codes
(140.3330) Lasers and laser optics : Laser damage
(160.6030) Materials : Silica

ToC Category:
Materials

History
Original Manuscript: August 25, 2009
Revised Manuscript: October 15, 2009
Manuscript Accepted: October 16, 2009
Published: December 8, 2009

Citation
Laurent Gallais, Philippe Cormont, and Jean-Luc Rullier, "Investigation of stress induced by CO2 laser processing of fused silica optics for laser damage growth mitigation," Opt. Express 17, 23488-23501 (2009)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-17-26-23488


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. J. Neauport, L. Lamaignere, H. Bercegol, F. Pilon and J.-C. Birolleau, "Polishing-induced contamination of fused silica optics and laser induced damage density at 351 nm," Opt. Express 13, 10163-10171 (2005). [CrossRef] [PubMed]
  2. S. G. Demos, M. Staggs, and M. R. Kozlowski, "Investigation of processes leading to damage growth in optical materials for large-aperture lasers," Appl. Opt. 41, 3628-3633 (2002). [CrossRef] [PubMed]
  3. R. M. Brusasco, B. M. Penetrante, J. A. Butler and L. W. Hrubes, "Localized CO2 laser treatment for mitigation of 351 nm damage growth on fused silica," Proc. SPIE 4679, 40-47 (2002). [CrossRef]
  4. R. Prasad, J. Bruere, J. Peterson, J. Halpin, M. Borden and R. Hackel, "Enhanced performance of large of optics using UV and IR lasers," Proc. SPIE 5273, 288-295 (2003). [CrossRef]
  5. M. D. Feit and A. M. Rubenchik, "Mechanisms of CO2 laser mitigation of laser damage growth in fused silica," Proc. SPIE 4932, 91-102 (2003). [CrossRef]
  6. M. D. Feit, A. M. Rubenchik, C. D. Boley and M. Rotter, "Development of a process model for CO2 laser mitigation of damage growth in fused silica," Proc. SPIE 5273, 145-154 (2004). [CrossRef]
  7. E. Mendez, K. M. Nowak, H. J. Baker, F. J. Villareal and D. R. Hall, "Localized CO2 laser damage repair of fused silica optics," Opt. Express 45, 5358-5367 (2006).
  8. G. Guss, I. Bass, V. Draggoo, R. Hackel, S. Payne, M. Lancaster and P. Mak, "Mitigation of growth of laser initiated surface damage in fused silica using a 4.6 µm wavelength laser," Proc. SPIE 6403, 64030M (2007). [CrossRef]
  9. S. Palmier, L. Gallais, M. Commandré, P. Cormont, R. Courchinoux, L. Lamaignère, J-L Rullier and P. Legros "Optimization of a laser mitigation process in damaged fused silica," Appl. Surface Science 255, 5532-5536 (2008). [CrossRef]
  10. I. L. Bass, G. M. Guss and R. P. Hackel, "Mitigation of laser damage growth in fused silica with a galvanometer scanned CO2 laser," Proc. SPIE 5991, C9910-C9910 (2005).
  11. A. During, P. Bouchut, J. G. Coutar, C. Leymarie and H. Bercegol, "Mitigation of laser damage on fused silica surfaces with a variable profile CO2 laser beam," Proc. SPIE 6403, 40323-40323 (2007).
  12. S. G. Demos, M. Staggs, K. Minoshima, and J. Fujimoto, "Characterization of laser induced damage sites in optical components," Opt. Express 10, 1444-1450 (2002). [PubMed]
  13. G. Guss, I. Bass, R. Hackel, C. Mailhiot and S. Demos, "In situ monitoring of surface post processing in large-aperture fused silica optics with optical coherent tomography," Appl. Opt. 47, 4569-4576 (2008). [CrossRef] [PubMed]
  14. B. Bertussi, P. Cormont, S. Palmier, P. Legros and J.-L. Rullier, "Initiation of laser-induced damage sites in fused silica optical components," Opt. Express 17, 11469-11479 (2009). [CrossRef] [PubMed]
  15. M. A. Stevens-Kalceff and J. Wong, "Distribution of defects induced in fused silica by ultraviolet laser pulses before and after treatment with a CO2 laser," J. Appl. Phys. 97, 113519 (2005). [CrossRef]
  16. S. Mainguy and B. Le Garrec, "Propagation of LIL/LMJ beams under the interaction with contamination particles and component surface defects," J. de Phys. IV 133, 653-655 (2006).
  17. M. J. Matthews, I. L. Bass, G. M. Guss, C. C Widmayer and F. L. Ravizza, "Downstream intensification effects associated with CO2 laser mitigation of fused silica," Proc. SPIE 6720, A7200-A7200 (2008).
  18. L. Lamaignère,S. Bouillet, R. Courchinoux, T. Donval, M. Josse, J.-C. Poncetta, and H. Bercegol, "An accurate, repeatable, and well characterized measurement of laser damage density of optical materials," Rev. Scientific Instruments 78, 103105 (2007). [CrossRef]
  19. M. Von Allmen, Laser-beam interactions with material, (Spinger-Verlag, 1987).
  20. A. D. McLachlan and F. P. Meyer, "Temperature dependence of the extinction coefficient of fused silica for CO2 laser wavelengths," Appl. Opt. 26, 1728-1731 (1987). [CrossRef] [PubMed]
  21. http://optics.heraeus-quarzglas.com
  22. http://www.comsol.com/
  23. J. Zarzyski, "Les verres et l'état vitreux", Masson (1982).
  24. S. Huard, Polarization of light, (John Wiley and Sons, 1997).
  25. Y. S. Touloukian, "Thermo-physical propoerties of matter vol.3 - Thermal conductivity of liquids and gases," IFI/Plenum, 1970.
  26. F. Dahmani, J. C. Lambropoulos, A. W. Schmid, S. Papernov and S. J. Burns, "Crack Arrest and Stress Dependence of Laser-Induced Surface Damage in Fused-Silica and Borosilicate Glass," Appl. Opt. 38, 6892-6903 (1999). [CrossRef]
  27. L. Xu, D. Lowney, P. J. McNally, A. Borowiec, A. Lankinen, T. O. Tuomi and A. N. Danilewsky, "Femtosecond versus nanosecond laser micro-machining of InP: a nondestructive three-dimensional analysis of strain," Semicond. Sci. Technol. 22, 970-979 (2007). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited