OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 17, Iss. 26 — Dec. 21, 2009
  • pp: 23511–23521

Design and optimization of a novel surface plasmon resonance biosensor based on Otto configuration

E. K. Akowuah, T. Gorman, and S. Haxha  »View Author Affiliations

Optics Express, Vol. 17, Issue 26, pp. 23511-23521 (2009)

View Full Text Article

Enhanced HTML    Acrobat PDF (488 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A theoretical study on a novel planar waveguide surface Plasmon Biosensor is presented in this paper. The proposed biosensor has a configuration similar to the Otto excitation mechanism for surface Plasmon polaritons. The performance of the device with respect to key system parameters such as gap - width and device length is investigated using an eigenmode solver with perfectly matched layers (PML). Device resolution of 2.3×10-6RIU has been demonstrated for an aqueous analyte.

© 2009 OSA

OCIS Codes
(060.2370) Fiber optics and optical communications : Fiber optics sensors
(130.3120) Integrated optics : Integrated optics devices
(130.6010) Integrated optics : Sensors
(240.6680) Optics at surfaces : Surface plasmons

ToC Category:

Original Manuscript: September 15, 2009
Revised Manuscript: November 18, 2009
Manuscript Accepted: November 22, 2009
Published: December 8, 2009

Virtual Issues
Vol. 5, Iss. 1 Virtual Journal for Biomedical Optics

E. K. Akowuah, T. Gorman, and S. Haxha, "Design and optimization of a novel surface plasmon resonance biosensor based on Otto configuration," Opt. Express 17, 23511-23521 (2009)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. Homola, S. Yee, and G. Gauglitz, “Surface plasmon resonance sensors: review,” Sens. Actuators B Chem. 54(1-2), 3–15 (1999). [CrossRef]
  2. C. Mouvet, R. D. Harris, C. Maciag, B. J. Luff, J. S. Wilkinson, J. Piehler, A. Brecht, G. Gauglitz, R. Abuknesha, and G. Ismail, “Determination of simazine in water samples by waveguide surface plasmon resonance,” Anal. Chim. Acta 338(1-2), 109–117 (1997). [CrossRef]
  3. J. Homola, J. Dostálek, S. F. Chen, A. Rasooly, S. Jiang, and S. S. Yee, “Spectral surface plasmon resonance biosensor for detection of staphylococcal enterotoxin B in milk,” Int. J. Food Microbiol. 75(1-2), 61–69 (2002). [CrossRef] [PubMed]
  4. V. Koubová, E. Brynda, L. Karasová, J. Skvor, J. Homola, J. Dostálek, P. Tobiska, and J. Rosický, “Detection of foodborne pathogens using surface plasmon resonance biosensors,” Sens. Actuat. B 74, 100–105 (2001). [CrossRef]
  5. T. T. Goodrich, H. J. Lee, and R. M. Corn, “Direct detection of genomic DNA by enzymatically amplified SPR imaging measurements of RNA microarrays,” J. Am. Chem. Soc. 126(13), 4086–4087 (2004). [CrossRef] [PubMed]
  6. X. D. Hoa, A. G. Kirk, and M. Tabrizian, “Towards integrated and sensitive surface plasmon resonance biosensors: a review of recent progress,” Biosens. Bioelectron. 23(2), 151–160 (2007). [CrossRef] [PubMed]
  7. J. Dostálek, J. Ctyroký, J. Homola, E. Brynda, M. Skalský, P. Nekvindová, J. Spirková, J. Skvor, and J. Schröfel, “Surface plasmon resonance biosensor based on integrated optical waveguide,” Sens. Actuat. B 76, 8–12 (2001). [CrossRef]
  8. R. C. Jorgenson and S. S. Yee, “A fiber-optics chemical sensor based on surface plasmon resonance,” Sens. Actuators B Chem. 12(3), 213–220 (1993). [CrossRef]
  9. M. Niggemann, A. Katerkamp, M. Pellmann, P. Bolsmann, J. Reinbold, and K. Cammann, “Remote sensing of tetrachloroethene with a micro-fibre optical gas sensor based on surface plasmon resonance spectroscopy,” Sens. Actuators B Chem. 34(1-3), 328–333 (1996). [CrossRef]
  10. R. Slavík, J. Homola, and E. Brynda, “A miniature fiber optic surface plasmon resonance sensor for fast detection of Staphylococcal enterotoxin B,” Biosens. Bioelectron. 17(6-7), 591–595 (2002). [CrossRef] [PubMed]
  11. A. J. C. Tubb, F. P. Payne, R. B. Millington, and C. R. Lowe, “Single-mode optical fibre surface plasma wave chemical sensor,” Sens. Actuators B Chem. 41(1-3), 71–79 (1997). [CrossRef]
  12. L. A. Obando and K. S. Booksh, “Tuning dynamic range and sensitivity of white-light, multimode, fiber-optic surface plasmon resonance sensors,” Anal. Chem. 71(22), 5116–5122 (1999). [CrossRef]
  13. A. Hassani, B. Gauvreau, M. Fassi Fehri, A. Kabashin, and M. Skorobogatiy, “Photonic crystal fiber and waveguide-based surface plasmon resonance sensors for application in the visible and Near-IR,” Electromagnetics 28(3), 198 (2008). [CrossRef]
  14. T. Allsop, R. Neal, C. Mou, P. Brown, S. Saied, S. Rehman, K. Kalli, D. J. Webb, J. Sullivan, D. Mapps, and I. Bennion, “Exploitation of multilayer coatings for infrared surface plasmon resonance fiber sensors,” Appl. Opt. 48(2), 276–286 (2009). [CrossRef] [PubMed]
  15. R. Jha, R. K. Verma, and B. D. Gupta, “Surface Plasmon Resonance-Based Tapered Fiber Optic Sensor: Sensitivity Enhancement by Introducing a Teflon Layer Between Core and Metal Layer,” Plasmonics 3(4), 151–156 (2008). [CrossRef]
  16. H. P. Ho, W. Yuan, C. L. Wong, S. Y. Wu, Y. K. Suen, S. K. Kong, and C. L. Lin, “Sensitivity enhancement based on application of multi-pass interferometry in phase-sensitive surface plasmon resonance biosensor,” Opt. Commun. 275(2), 491–496 (2007). [CrossRef]
  17. R. Jha and A. K. Sharma, “High-performance sensor based on surface plasmon resonance with chalcogenide prism and aluminum for detection in infrared,” Opt. Lett. 34(6), 749–751 (2009). [CrossRef] [PubMed]
  18. P. Debackere, S. Scheerlinck, P. Bienstman, and R. Baets, “Surface plasmon interferometer in silicon-on-insulator: novel concept for an integrated biosensor,” in 3rd International Conference on Group IV Photonics(IEEE, Ottawa, CANADA, 2006), pp. 7–9.
  19. S. A. Maier, “Plasmonics: Fundamentals and Applications,” (Springer, New York, 40 – 52, 2007)
  20. A. D. Boardman, “Electromagnetic surface modes,” (Wiley, Chichester, 1982).
  21. E. Kretschmann and H. Raether, “Radiative decay of nonradiative surface plasmons excited by light,” Z. Naturforsch. A 23, 2135–2136 (1968).
  22. R. D. Harris and J. S. Wilkinson, “Waveguide surface Plasmon resonance sensors,” Sens. Actuators B Chem. 29(1-3), 261–267 (1995). [CrossRef]
  23. R. Ramaswamy and R. Srivastava, “Ion exchanged glass waveguides: a review,” J. Lightwave Technol. 6(6), 984–1000 (1988). [CrossRef]
  24. P. Noutsios and G. L. Yip, “Characterization and modeling of planar surface and buried glass waveguides made by field-assisted K^+ ion exchange,” Appl. Opt. 31(25), 5283–5291 (1992). [CrossRef] [PubMed]
  25. H. de Bruijn, R. Kooyman, and J. Greve, “Choice of metal and wavelength for surface-plasmon resonance sensors: some considerations,” Appl. Opt. 31(4), 440_1–442 (1992). [CrossRef]
  26. M. L. Nesterov, A. V. Kats, and S. K. Turitsyn, “Extremely short-length surface plasmon resonance devices,” Opt. Express 16(25), 20227–20240 (2008). [CrossRef] [PubMed]
  27. C. Jung, S. Yee, and K. Kuhn, “Integrated-Optics Wave-Guide Modulator Based On Surface-Plasmon Resonance,” J. Lightwave Technol. 12(10), 1802–1806 (1994). [CrossRef]
  28. R. Levy and S. Ruschin, “Design of a Single-Channel Modal Interferometer Waveguide Sensor,” IEEE Sens. J. 9(2), 146–153 (2009). [CrossRef]
  29. CAMFR, http://camfr.sourceforge.net .
  30. P. Yeh, “Optical Waves in Layered Media,” (Wiley, New York, 1988).
  31. J. Chilwell and I. Hodgkinson, “Thin-films field-transfer matrix theory of planar multilayer waveguides and eflection from prism-loaded waveguides,” J. Opt. Soc. Am. A 1(7), 742–753 (1984). [CrossRef]
  32. A. Ghatak, K. Thyagarajan, and M. Shenoy, “Numerical analysis of planar optical waveguides using matrix approach,” J. Lightwave Technol. 5(5), 660–667 (1987). [CrossRef]
  33. R. Syms, and J. Cozens, Optical Guided Waves and Devices, McGraw-Hill, London, (1992).
  34. P. B. Johnson and R. W. Christy, “Optical-Constants of Noble-Metals,” Phys. Rev. B 6(12), 4370–4379 (1972). [CrossRef]
  35. B. Gauvreau, A. Hassani, M. Fassi Fehri, A. Kabashin, and M. A. Skorobogatiy, “Photonic bandgap fiber-based Surface Plasmon Resonance sensors,” Opt. Express 15(18), 11413–11426 (2007). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited